generateAndTrain_maxwell.sh 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. #! bin/bash
  2. if [ -z "$1" ]
  3. then
  4. echo "No argument supplied"
  5. echo "Need of vector size"
  6. exit 1
  7. fi
  8. VECTOR_SIZE=$1
  9. # selection of four scenes (only maxwell)
  10. scenes="A, D, G, H"
  11. for size in {"4","8","16","26","32","40"}; do
  12. half=$(($size/2))
  13. start=-$half
  14. for counter in {0..4}; do
  15. end=$(($start+$size))
  16. if [ "$end" -gt "$VECTOR_SIZE" ]; then
  17. start=$(($VECTOR_SIZE-$size))
  18. end=$(($VECTOR_SIZE))
  19. fi
  20. if [ "$start" -lt "0" ]; then
  21. start=$((0))
  22. end=$(($size))
  23. fi
  24. for nb_zones in {6,8,10,12,16}; do
  25. for mode in {"svd","svdn","svdne"}; do
  26. for model in {"svm_model","ensemble_model","ensemble_model_v2"}; do
  27. FILENAME="data_svm/data_maxwell_N${size}_B${start}_E${end}_nb_zones_${nb_zones}_${mode}"
  28. MODEL_NAME="${model}_N${size}_B${start}_E${end}_nb_zones_${nb_zones}_${mode}"
  29. echo $FILENAME
  30. python generate_data_svm_random.py --output ${FILENAME} --interval "${start},${end}" --kind ${mode} --scenes "${scenes}" --nb_zones "${nb_zones}" --percent 1 --sep ';' --rowindex '0'
  31. python models/${model}_train.py --data ${FILENAME}.train --output ${MODEL_NAME}
  32. python predict_seuil_expe.py --interval "${start}, ${end}" --model "./saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --limit_detection '2'
  33. python save_model_result_in_md.py --interval "${start}, ${end}" --model "./saved_models/${MODEL_NAME}.joblib" --mode "${mode}"
  34. done
  35. done
  36. done
  37. if [ "$counter" -eq "0" ]; then
  38. start=$(($start+50-$half))
  39. else
  40. start=$(($start+50))
  41. fi
  42. done
  43. done