123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 |
- from sklearn.externals import joblib
- import numpy as np
- from ipfml import image_processing
- from PIL import Image
- import sys, os, getopt
- import subprocess
- import time
- current_dirpath = os.getcwd()
- config_filename = "config"
- scenes_path = './fichiersSVD_light'
- min_max_filename = 'min_max_values'
- threshold_expe_filename = 'seuilExpe'
- tmp_filename = '/tmp/__model__img_to_predict.png'
- threshold_map_folder = "threshold_map"
- threshold_map_file_prefix = "treshold_map_"
- zones = np.arange(16)
- def main():
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python predict_noisy_image.py --interval "0,20" --model path/to/xxxx.joblib --mode ["svdn", "svdne"] --limit_detection xx')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "ht:m:o:l", ["help=", "interval=", "model=", "mode=", "limit_detection="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python predict_noisy_image.py --interval "xx,xx" --model path/to/xxxx.joblib --mode ["svdn", "svdne"] --limit_detection xx')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python predict_noisy_image.py --interval "xx,xx" --model path/to/xxxx.joblib --mode ["svdn", "svdne"] --limit_detection xx')
- sys.exit()
- elif o in ("-t", "--interval"):
- p_interval = a
- elif o in ("-m", "--model"):
- p_model_file = a
- elif o in ("-o", "--mode"):
- p_mode = a
- if p_mode != 'svdn' and p_mode != 'svdne' and p_mode != 'svd':
- assert False, "Mode not recognized"
-
- elif o in ("-l", "--limit_detection"):
- p_limit = int(a)
- else:
- assert False, "unhandled option"
- scenes = os.listdir(scenes_path)
-
- if min_max_filename in scenes:
- scenes.remove(min_max_filename)
- # go ahead each scenes
- for id_scene, folder_scene in enumerate(scenes):
-
- print(folder_scene)
- scene_path = scenes_path + "/" + folder_scene
- with open(scene_path + "/" + config_filename, "r") as config_file:
- last_image_name = config_file.readline().strip()
- prefix_image_name = config_file.readline().strip()
- start_index_image = config_file.readline().strip()
- end_index_image = config_file.readline().strip()
- step_counter = int(config_file.readline().strip())
- threshold_expes = []
- threshold_expes_detected = []
- threshold_expes_counter = []
- threshold_expes_found = []
- # get zones list info
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- zone_folder = "zone"+index_str
- with open(scene_path + "/" + zone_folder + "/" + threshold_expe_filename) as f:
- threshold = int(f.readline())
- threshold_expes.append(threshold)
- # Initialize default data to get detected model threshold found
- threshold_expes_detected.append(False)
- threshold_expes_counter.append(0)
- threshold_expes_found.append(int(end_index_image)) # by default use max
- current_counter_index = int(start_index_image)
- end_counter_index = int(end_index_image)
- print(current_counter_index)
- check_all_done = False
- while(current_counter_index <= end_counter_index and not check_all_done):
-
- current_counter_index_str = str(current_counter_index)
- while len(start_index_image) > len(current_counter_index_str):
- current_counter_index_str = "0" + current_counter_index_str
- img_path = scene_path + "/" + prefix_image_name + current_counter_index_str + ".png"
- current_img = Image.open(img_path)
- img_blocks = image_processing.divide_in_blocks(current_img, (200, 200))
- check_all_done = all(d == True for d in threshold_expes_detected)
- for id_block, block in enumerate(img_blocks):
-
- # check only if necessary for this scene (not already detected)
- if not threshold_expes_detected[id_block]:
- tmp_file_path = tmp_filename.replace('__model__', p_model_file.split('/')[-1].replace('.joblib', '_'))
- block.save(tmp_file_path)
- python_cmd = "python predict_noisy_image_svd_lab.py --image " + tmp_file_path + \
- " --interval '" + p_interval + \
- "' --model " + p_model_file + \
- " --mode " + p_mode
- ## call command ##
- p = subprocess.Popen(python_cmd, stdout=subprocess.PIPE, shell=True)
-
- (output, err) = p.communicate()
-
- ## Wait for result ##
- p_status = p.wait()
- prediction = int(output)
- if prediction == 0:
- threshold_expes_counter[id_block] = threshold_expes_counter[id_block] + 1
- else:
- threshold_expes_counter[id_block] = 0
-
- if threshold_expes_counter[id_block] == p_limit:
- threshold_expes_detected[id_block] = True
- threshold_expes_found[id_block] = current_counter_index
- print(str(id_block) + " : " + str(current_counter_index) + "/" + str(threshold_expes[id_block]) + " => " + str(prediction))
- current_counter_index += step_counter
- print("------------------------")
- print("Scene " + str(id_scene + 1) + "/" + str(len(scenes)))
- print("------------------------")
- # end of scene => display of results
- # construct path using model name for saving threshold map folder
- model_treshold_path = threshold_map_folder + '/' + p_model_file.split('/')[-1]
-
- if not os.path.exists(model_treshold_path):
- os.makedirs(model_treshold_path)
- abs_dist = []
- map_filename = model_treshold_path + "/" + threshold_map_file_prefix + folder_scene
- f_map = open(map_filename, 'w')
- line_information = ""
- # default header
- f_map.write('| | | | |\n')
- f_map.write('---|----|----|---\n')
- for id, threshold in enumerate(threshold_expes_found):
- line_information += str(threshold) + " / " + str(threshold_expes[id]) + " | "
- abs_dist.append(abs(threshold - threshold_expes[id]))
- if (id + 1) % 4 == 0:
- f_map.write(line_information + '\n')
- line_information = ""
-
- f_map.write(line_information + '\n')
- min_abs_dist = min(abs_dist)
- max_abs_dist = max(abs_dist)
- avg_abs_dist = sum(abs_dist) / len(abs_dist)
- f_map.write('\nScene information : ')
- f_map.write('\n- BEGIN : ' + str(start_index_image))
- f_map.write('\n- END : ' + str(end_index_image))
- f_map.write('\n\nDistances information : ')
- f_map.write('\n- MIN : ' + str(min_abs_dist))
- f_map.write('\n- MAX : ' + str(max_abs_dist))
- f_map.write('\n- AVG : ' + str(avg_abs_dist))
- f_map.write('\n\nOther information : ')
- f_map.write('\n- Detection limit : ' + str(p_limit))
- # by default print last line
- f_map.close()
- print("Scene " + str(id_scene + 1) + "/" + str(len(scenes)) + " Done..")
- print("------------------------")
- time.sleep(10)
- if __name__== "__main__":
- main()
|