123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- from sklearn.externals import joblib
- import numpy as np
- from ipfml import image_processing
- from PIL import Image
- import sys, os, getopt
- import subprocess
- import time
- current_dirpath = os.getcwd()
- threshold_map_folder = "threshold_map"
- threshold_map_file_prefix = "treshold_map_"
- markdowns_folder = "models_info"
- zones = np.arange(16)
- def main():
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python save_model_result_in_md.py --interval "0,20" --model path/to/xxxx.joblib --mode ["svd", "svdn", "svdne"]')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "ht:m:o:l", ["help=", "interval=", "model=", "mode="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python save_model_result_in_md.py --interval "xx,xx" --model path/to/xxxx.joblib --mode ["svd", "svdn", "svdne"]')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python save_model_result_in_md.py --interval "xx,xx" --model path/to/xxxx.joblib --mode ["svd", "svdn", "svdne"]')
- sys.exit()
- elif o in ("-t", "--interval"):
- p_interval = list(map(int, a.split(',')))
- elif o in ("-m", "--model"):
- p_model_file = a
- elif o in ("-o", "--mode"):
- p_mode = a
- if p_mode != 'svdn' and p_mode != 'svdne' and p_mode != 'svd':
- assert False, "Mode not recognized"
- else:
- assert False, "unhandled option"
-
- # call model and get global result in scenes
- begin, end = p_interval
- bash_cmd = "bash testModelByScene.sh '" + str(begin) + "' '" + str(end) + "' '" + p_model_file + "' '" + p_mode + "'"
- print(bash_cmd)
-
- ## call command ##
- p = subprocess.Popen(bash_cmd, stdout=subprocess.PIPE, shell=True)
-
- (output, err) = p.communicate()
-
- ## Wait for result ##
- p_status = p.wait()
- if not os.path.exists(markdowns_folder):
- os.makedirs(markdowns_folder)
-
- # get model name to construct model
- md_model_path = markdowns_folder + '/' + p_model_file.split('/')[-1].replace('.joblib', '.md')
- with open(md_model_path, 'w') as f:
- f.write(output.decode("utf-8"))
- # read each threshold_map information if exists
- model_map_info_path = threshold_map_folder + '/' + p_model_file.replace('saved_models/', '')
- if not os.path.exists(model_map_info_path):
- f.write('\n\n No threshold map information')
- else:
- maps_files = os.listdir(model_map_info_path)
- # get all map information
- for t_map_file in maps_files:
-
- file_path = model_map_info_path + '/' + t_map_file
- with open(file_path, 'r') as map_file:
- title_scene = t_map_file.replace(threshold_map_file_prefix, '')
- f.write('\n\n## ' + title_scene + '\n')
- content = map_file.readlines()
- # getting each map line information
- for line in content:
- f.write(line)
- f.close()
- if __name__== "__main__":
- main()
|