12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364 |
- #! bin/bash
- if [ -z "$1" ]
- then
- echo "No argument supplied"
- echo "Need of vector size"
- exit 1
- fi
- if [ -z "$2" ]
- then
- echo "No argument supplied"
- echo "Need of model output name"
- exit 1
- fi
- VECTOR_SIZE=$1
- INPUT_MODEL_NAME=$2
- # selection of six scenes
- scenes="A, B, C, D, E, F, G, H, I"
- for size in {"4","8","16","26","32","40"}; do
- start=0
- for counter in {0..4}; do
- end=$(($start+$size))
- if [ "$end" -gt "$VECTOR_SIZE" ]; then
- start=$(($VECTOR_SIZE-$size))
- end=$(($VECTOR_SIZE))
- fi
- for nb_zones in {2,3,4,5,6,7,8,9,10}; do
- for metric in {"lab","mscn"}; do
-
- for mode in {"svd","svdn","svdne"}; do
- FILENAME="data/data_${mode}_${metric}_N${size}_B${start}_E${end}_nb_zones_${nb_zones}_random"
- MODEL_NAME="${INPUT_MODEL_NAME}_${mode}_${metric}_N${size}_B${start}_E${end}_nb_zones_${nb_zones}"
- echo $FILENAME
- python generate_data_model_random.py --output ${FILENAME} --interval "${start},${end}" --kind ${mode} --metric ${metric} --scenes "${scenes}" --nb_zones "${nb_zones}" --percent 1 --sep ';' --rowindex '0'
- python svm_model_train.py --data ${FILENAME}.train --output ${MODEL_NAME} &
- # add computation of scenes score and LaTeX display of its
- done
- done
- done
- if [ -z "$2" ]
- then
- echo "No argument supplied"
- echo "Need of model output name"
- exit 1
- fi
- VECTOR_SIZE=$1
- INPUT_MODEL_NAME=$2
- start=$(($start+50))
- done
- done
|