123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- #! bin/bash
- if [ -z "$1" ]
- then
- echo "No argument supplied"
- echo "Need of vector size"
- exit 1
- fi
- if [ -z "$2" ]
- then
- echo "No argument supplied"
- echo "Need of metric information"
- exit 1
- fi
- VECTOR_SIZE=200
- size=$1
- metric=$2
- # selection of four scenes (only maxwell)
- scenes="A, D, G, H"
- half=$(($size/2))
- start=-$half
- for counter in {0..4}; do
- end=$(($start+$size))
- if [ "$end" -gt "$VECTOR_SIZE" ]; then
- start=$(($VECTOR_SIZE-$size))
- end=$(($VECTOR_SIZE))
- fi
- if [ "$start" -lt "0" ]; then
- start=$((0))
- end=$(($size))
- fi
- for nb_zones in {6,8,10,12,16}; do
- echo $start $end
- for mode in {"svd","svdn","svdne"}; do
- for model in {"svm_model","ensemble_model","ensemble_model_v2"}; do
- FILENAME="data/data_maxwell_N${size}_B${start}_E${end}_nb_zones_${nb_zones}_${metric}_${mode}"
- MODEL_NAME="${model}_N${size}_B${start}_E${end}_nb_zones_${nb_zones}_${metric}_${mode}"
- echo $FILENAME
- python generate_data_model_random.py --output ${FILENAME} --interval "${start},${end}" --kind ${mode} --metric ${metric} --scenes "${scenes}" --nb_zones "${nb_zones}" --percent 1 --sep ';' --rowindex '0'
- python models/${model}_train.py --data ${FILENAME}.train --output ${MODEL_NAME}
-
- python predict_seuil_expe_maxwell.py --interval "${start},${end}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --metric ${metric} --limit_detection '2'
- python save_model_result_in_md_maxwell.py --interval "${start},${end}" --model "saved_models/${MODEL_NAME}.joblib" --mode "${mode}" --metric ${metric}
- done
- done
- done
- if [ "$counter" -eq "0" ]; then
- start=$(($start+50-$half))
- else
- start=$(($start+50))
- fi
- done
|