123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- from sklearn.model_selection import train_test_split
- from sklearn.model_selection import GridSearchCV
- from sklearn.linear_model import LogisticRegression
- from sklearn.ensemble import RandomForestClassifier, VotingClassifier
- from sklearn.neighbors import KNeighborsClassifier
- from sklearn.ensemble import GradientBoostingClassifier
- import sklearn.svm as svm
- from sklearn.utils import shuffle
- from sklearn.externals import joblib
- import numpy as np
- import pandas as pd
- from sklearn.metrics import accuracy_score
- import sys, os, getopt
- current_dirpath = os.getcwd()
- output_model_folder = os.path.join(current_dirpath, 'saved_models')
- def get_best_model(X_train, y_train):
- Cs = [0.001, 0.01, 0.1, 1, 10, 20, 30]
- gammas = [0.001, 0.01, 0.1, 1, 5, 10]
- param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
-
- parameters = {'kernel':['rbf'], 'C': np.arange(1, 20)}
- svc = svm.SVC(gamma="scale", probability=True, max_iter=10000)
- clf = GridSearchCV(svc, parameters, cv=5, scoring='accuracy', verbose=10)
- clf.fit(X_train, y_train)
- model = clf.best_estimator_
- return model
- def main():
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python ensemble_model_train_v2.py --data xxxx --output xxxx')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "hd:o", ["help=", "data=", "output="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python ensemble_model_train_v2.py --data xxxx --output xxxx')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python ensemble_model_train_v2.py --data xxxx --output xxxx')
- sys.exit()
- elif o in ("-d", "--data"):
- p_data_file = a
- elif o in ("-o", "--output"):
- p_output = a
- else:
- assert False, "unhandled option"
- if not os.path.exists(output_model_folder):
- os.makedirs(output_model_folder)
- # get and split data
- dataset = pd.read_csv(p_data_file, header=None, sep=";")
- # default first shuffle of data
- dataset = shuffle(dataset)
-
- # get dataset with equal number of classes occurences
- noisy_df = dataset[dataset.ix[:, 0] == 1]
- not_noisy_df = dataset[dataset.ix[:, 0] == 0]
- nb_noisy = len(noisy_df.index)
-
- final_df = pd.concat([not_noisy_df[0:nb_noisy], noisy_df[:]])
- #final_df = pd.concat([not_noisy_df, noisy_df])
-
- # shuffle data another time
- final_df = shuffle(final_df)
-
- print(len(final_df.index))
- y_dataset = final_df.ix[:,0]
- x_dataset = final_df.ix[:,1:]
- X_train, X_test, y_train, y_test = train_test_split(x_dataset, y_dataset, test_size=0.5, random_state=42)
- svm_model = get_best_model(X_train, y_train)
- knc_model = KNeighborsClassifier(n_neighbors=2)
- gbc_model = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0)
- lr_model = LogisticRegression(solver='liblinear', multi_class='ovr', random_state=1)
- rf_model = RandomForestClassifier(n_estimators=100, random_state=1)
- ensemble_model = VotingClassifier(estimators=[
- ('lr', lr_model),
- ('knc', knc_model),
- ('gbc', gbc_model),
- ('svm', svm_model),
- ('rf', rf_model)],
- voting='soft', weights=[1, 1, 1, 1, 1])
- ensemble_model.fit(X_train, y_train)
- y_train_model = ensemble_model.predict(X_train)
- print("**Train :** " + str(accuracy_score(y_train, y_train_model)))
- y_pred = ensemble_model.predict(X_test)
- print("**Test :** " + str(accuracy_score(y_test, y_pred)))
- joblib.dump(ensemble_model, output_model_folder + '/' + p_output + '.joblib')
- if __name__== "__main__":
- main()
|