1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- #! bin/bash
- if [ -z "$1" ]
- then
- echo "No first argument supplied"
- echo "Need of begin vector index"
- exit 1
- fi
- if [ -z "$2" ]
- then
- echo "No first argument supplied"
- echo "Need of end vector index"
- exit 1
- fi
- if [ -z "$3" ]
- then
- echo "No second argument supplied"
- echo "Need of model input"
- exit 1
- fi
- if [ -z "$4" ]
- then
- echo "No third argument supplied"
- echo "Need of separator char : ':', ';'"
- exit 1
- fi
- if [ -z "$5" ]
- then
- echo "No fourth argument supplied"
- echo "Need of index row indication : 0 or 1"
- exit 1
- fi
- INPUT_BEGIN=$1
- INPUT_END=$2
- INPUT_MODEL=$3
- INPUT_SEP=$4
- INPUT_ROW=$5
- zones="0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15"
- for scene in {"A","B","C","D","E","F","G","H","I"}; do
- for mode in {"svd","svdn","svdne"}; do
-
- FILENAME="data_svm/data_${mode}_B${INPUT_BEGIN}_E${INPUT_END}_scene${scene}"
- python generate_data_svm.py --output ${FILENAME} --interval "${INPUT_BEGIN},${INPUT_END}" --kind ${mode} --scenes "${scene}" --zones "${zones}" --percent 1 --sep "${INPUT_SEP}" --rowindex "${INPUT_ROW}"
- python prediction.py --data "$FILENAME.train" --model ${INPUT_MODEL} --output "${INPUT_MODEL}_Scene${scene}_mode${mode}.prediction"
- done
- done
|