display_scenes_zones.py 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Fri Sep 14 21:02:42 2018
  5. @author: jbuisine
  6. """
  7. from __future__ import print_function
  8. import sys, os, getopt
  9. import numpy as np
  10. import random
  11. import time
  12. import json
  13. from PIL import Image
  14. from ipfml import image_processing
  15. from ipfml import metrics
  16. from skimage import color
  17. import matplotlib.pyplot as plt
  18. from modules.utils import config as cfg
  19. config_filename = cfg.config_filename
  20. zone_folder = cfg.zone_folder
  21. min_max_filename = cfg.min_max_filename_extension
  22. # define all scenes values
  23. scenes_list = cfg.scenes_names
  24. scenes_indexes = cfg.scenes_indices
  25. choices = cfg.normalization_choices
  26. path = cfg.dataset_path
  27. zones = cfg.zones_indices
  28. seuil_expe_filename = cfg.seuil_expe_filename
  29. metric_choices = cfg.metric_choices_labels
  30. def display_data_scenes(data_type, p_scene, p_kind):
  31. """
  32. @brief Method which displays data from scene
  33. @param data_type, metric choice
  34. @param scene, scene choice
  35. @param mode, normalization choice
  36. @return nothing
  37. """
  38. scenes = os.listdir(path)
  39. # remove min max file from scenes folder
  40. scenes = [s for s in scenes if min_max_filename not in s]
  41. # go ahead each scenes
  42. for id_scene, folder_scene in enumerate(scenes):
  43. if p_scene == folder_scene:
  44. print(folder_scene)
  45. scene_path = os.path.join(path, folder_scene)
  46. config_file_path = os.path.join(scene_path, config_filename)
  47. with open(config_file_path, "r") as config_file:
  48. last_image_name = config_file.readline().strip()
  49. prefix_image_name = config_file.readline().strip()
  50. start_index_image = config_file.readline().strip()
  51. end_index_image = config_file.readline().strip()
  52. step_counter = int(config_file.readline().strip())
  53. # construct each zones folder name
  54. zones_folder = []
  55. # get zones list info
  56. for index in zones:
  57. index_str = str(index)
  58. if len(index_str) < 2:
  59. index_str = "0" + index_str
  60. current_zone = "zone"+index_str
  61. zones_folder.append(current_zone)
  62. zones_images_data = []
  63. threshold_info = []
  64. for id_zone, zone_folder in enumerate(zones_folder):
  65. zone_path = os.path.join(scene_path, zone_folder)
  66. current_counter_index = int(start_index_image)
  67. end_counter_index = int(end_index_image)
  68. # get threshold information
  69. path_seuil = os.path.join(zone_path, seuil_expe_filename)
  70. # open treshold path and get this information
  71. with open(path_seuil, "r") as seuil_file:
  72. seuil_learned = int(seuil_file.readline().strip())
  73. threshold_image_found = False
  74. while(current_counter_index <= end_counter_index and not threshold_image_found):
  75. if seuil_learned < int(current_counter_index):
  76. current_counter_index_str = str(current_counter_index)
  77. while len(start_index_image) > len(current_counter_index_str):
  78. current_counter_index_str = "0" + current_counter_index_str
  79. threshold_image_found = True
  80. threshold_image_zone = current_counter_index_str
  81. threshold_info.append(threshold_image_zone)
  82. current_counter_index += step_counter
  83. # all indexes of picture to plot
  84. images_indexes = [start_index_image, threshold_image_zone, end_index_image]
  85. images_data = []
  86. print(images_indexes)
  87. for index in images_indexes:
  88. img_path = os.path.join(scene_path, prefix_image_name + index + ".png")
  89. current_img = Image.open(img_path)
  90. img_blocks = image_processing.divide_in_blocks(current_img, (200, 200))
  91. # getting expected block id
  92. block = img_blocks[id_zone]
  93. # get data from mode
  94. # Here you can add the way you compute data
  95. if data_type == 'lab':
  96. block_file_path = '/tmp/lab_img.png'
  97. block.save(block_file_path)
  98. data = image_processing.get_LAB_L_SVD_s(Image.open(block_file_path))
  99. if data_type == 'mscn_revisited':
  100. img_mscn_revisited = image_processing.rgb_to_mscn(block)
  101. # save tmp as img
  102. img_output = Image.fromarray(img_mscn_revisited.astype('uint8'), 'L')
  103. mscn_revisited_file_path = '/tmp/mscn_revisited_img.png'
  104. img_output.save(mscn_revisited_file_path)
  105. img_block = Image.open(mscn_revisited_file_path)
  106. # extract from temp image
  107. data = metrics.get_SVD_s(img_block)
  108. if data_type == 'mscn':
  109. img_gray = np.array(color.rgb2gray(np.asarray(block))*255, 'uint8')
  110. img_mscn = image_processing.calculate_mscn_coefficients(img_gray, 7)
  111. img_mscn_norm = image_processing.normalize_2D_arr(img_mscn)
  112. img_mscn_gray = np.array(img_mscn_norm*255, 'uint8')
  113. data = metrics.get_SVD_s(img_mscn_gray)
  114. if data_type == 'low_bits_6':
  115. low_bits_6 = image_processing.rgb_to_LAB_L_low_bits(block, 63)
  116. # extract from temp image
  117. data = metrics.get_SVD_s(low_bits_6)
  118. if data_type == 'low_bits_5':
  119. low_bits_5 = image_processing.rgb_to_LAB_L_low_bits(block, 31)
  120. # extract from temp image
  121. data = metrics.get_SVD_s(low_bits_5)
  122. if data_type == 'low_bits_4':
  123. low_bits_4 = image_processing.rgb_to_LAB_L_low_bits(block)
  124. # extract from temp image
  125. data = metrics.get_SVD_s(low_bits_4)
  126. if data_type == 'low_bits_3':
  127. low_bits_3 = image_processing.rgb_to_LAB_L_low_bits(block, 7)
  128. # extract from temp image
  129. data = metrics.get_SVD_s(low_bits_3)
  130. if data_type == 'low_bits_2':
  131. low_bits_2 = image_processing.rgb_to_LAB_L_low_bits(block, 3)
  132. # extract from temp image
  133. data = metrics.get_SVD_s(low_bits_2)
  134. ##################
  135. # Data mode part #
  136. ##################
  137. # modify data depending mode
  138. if p_kind == 'svdn':
  139. data = image_processing.normalize_arr(data)
  140. if p_kind == 'svdne':
  141. path_min_max = os.path.join(path, data_type + min_max_filename)
  142. with open(path_min_max, 'r') as f:
  143. min_val = float(f.readline())
  144. max_val = float(f.readline())
  145. data = image_processing.normalize_arr_with_range(data, min_val, max_val)
  146. # append of data
  147. images_data.append(data)
  148. zones_images_data.append(images_data)
  149. fig=plt.figure(figsize=(8, 8))
  150. fig.suptitle(data_type + " values for " + p_scene + " scene (normalization : " + p_kind + ")", fontsize=20)
  151. for id, data in enumerate(zones_images_data):
  152. fig.add_subplot(4, 4, (id + 1))
  153. plt.plot(data[0], label='Noisy_' + start_index_image)
  154. plt.plot(data[1], label='Threshold_' + threshold_info[id])
  155. plt.plot(data[2], label='Reference_' + end_index_image)
  156. plt.ylabel(data_type + ' SVD, ZONE_' + str(id + 1), fontsize=18)
  157. plt.xlabel('Vector features', fontsize=18)
  158. plt.legend(bbox_to_anchor=(0.5, 1), loc=2, borderaxespad=0.2, fontsize=18)
  159. plt.ylim(0, 0.1)
  160. plt.show()
  161. def main():
  162. if len(sys.argv) <= 1:
  163. print('Run with default parameters...')
  164. print('python generate_all_data.py --metric all --scene A --kind svdn')
  165. sys.exit(2)
  166. try:
  167. opts, args = getopt.getopt(sys.argv[1:], "hm:s:k", ["help=", "metric=", "scene=", "kind="])
  168. except getopt.GetoptError:
  169. # print help information and exit:
  170. print('python generate_all_data.py --metric all --scene A --kind svdn')
  171. sys.exit(2)
  172. for o, a in opts:
  173. if o == "-h":
  174. print('python generate_all_data.py --metric all --scene A --kind svdn')
  175. sys.exit()
  176. elif o in ("-m", "--metric"):
  177. p_metric = a
  178. if p_metric != 'all' and p_metric not in metric_choices:
  179. assert False, "Invalid metric choice"
  180. elif o in ("-s", "--scene"):
  181. p_scene = a
  182. if p_scene not in scenes_indexes:
  183. assert False, "Invalid metric choice"
  184. else:
  185. p_scene = scenes_list[scenes_indexes.index(p_scene)]
  186. elif o in ("-k", "--kind"):
  187. p_kind = a
  188. if p_kind not in choices:
  189. assert False, "Invalid metric choice"
  190. else:
  191. assert False, "unhandled option"
  192. display_data_scenes(p_metric, p_scene, p_kind)
  193. if __name__== "__main__":
  194. main()