generate_data.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Fri Sep 14 21:02:42 2018
  5. @author: jbuisine
  6. """
  7. from __future__ import print_function
  8. import sys, os
  9. import numpy as np
  10. import random
  11. import time
  12. config_filename = "config"
  13. zone_folder = "zone"
  14. min_max_filename = "min_max_values"
  15. output_file_svd = "SVD_LAB_test_im6.csv"
  16. output_file_svdn = "SVDN_LAB_test_im6.csv"
  17. output_file_svdne = "SVDNE_LAB_test_im6.csv"
  18. # define all scenes values
  19. scenes = ['Appart1opt02', 'Bureau1', 'Cendrier', 'EchecsBas', 'PNDVuePlongeante', 'SdbCentre', 'SdbDroite', 'Selles']
  20. choices = ['svd', 'svdn', 'svdne']
  21. path = './data'
  22. zones = np.arange(16)
  23. file_choice = [output_file_svd, output_file_svdn, output_file_svdne]
  24. seuil_expe_filename = 'seuilExpe'
  25. def generate_data_svd_lab():
  26. """
  27. @brief Method which generates all .csv files from scenes photos
  28. @param path - path of scenes folder information
  29. @return nothing
  30. """
  31. # TODO :
  32. # - parcourir chaque dossier de scene
  33. scenes = os.listdir(path)
  34. for folder_scene in scenes:
  35. folder_path = path + "/" + folder_scene
  36. with open(folder_path + "/" + config_filename, "r") as config_file:
  37. last_image_name = config_file.readline().strip()
  38. prefix_image_name = config_file.readline().strip()
  39. start_index_image = config_file.readline().strip()
  40. end_index_image = config_file.readline().strip()
  41. step_counter = int(config_file.readline().strip())
  42. current_counter_index = int(start_index_image)
  43. end_counter_index = int(start_index_image)
  44. print(current_counter_index)
  45. while(current_counter_index <= end_index_image):
  46. print(current_counter_index)
  47. current_counter_index += step_counter
  48. # - récupérer les informations des fichiers de configurations
  49. # - création des fichiers de sortie SVD, SVDE, SVDNE
  50. def construct_new_line(path_seuil, interval, line, sep):
  51. begin, end = interval
  52. line_data = line.split(';')
  53. seuil = line_data[0]
  54. metrics = line_data[begin+1:end]
  55. with open(path_seuil, "r") as seuil_file:
  56. seuil_learned = int(seuil_file.readline().strip())
  57. if seuil_learned > int(seuil):
  58. line = '0'
  59. else:
  60. line = '1'
  61. for idx, val in enumerate(metrics):
  62. line += " " + str(idx + 1) + ":" + val
  63. line += '\n'
  64. return line
  65. def generate_data_svm(_filename, _interval, _choice, _scenes = scenes, _zones = zones, _percent = 1, _sep=':'):
  66. output_train_filename = _filename + ".train"
  67. output_test_filename = _filename + ".test"
  68. train_file = open(output_train_filename, 'w')
  69. test_file = open(output_test_filename, 'w')
  70. scenes = os.listdir(path)
  71. for id_scene, folder_scene in enumerate(scenes):
  72. scene_path = path + "/" + folder_scene
  73. print("Current path scene : " + scene_path)
  74. zones_folder = []
  75. # create zones list
  76. for index in zones:
  77. index_str = str(index)
  78. if len(index_str) < 2:
  79. index_str = "0" + index_str
  80. zones_folder.append("zone"+index_str)
  81. for id_zone, zone_folder in enumerate(zones_folder):
  82. print(zone_folder)
  83. zone_path = scene_path + "/" + zone_folder
  84. data_filename = file_choice[choices.index(_choice)]
  85. data_file_path = zone_path + "/" + data_filename
  86. print(data_file_path)
  87. print(id_zone in _zones)
  88. # getting number of line and read randomly lines
  89. f = open(data_file_path)
  90. lines = f.readlines()
  91. #num_lines = sum(1 for line in open(data_file_path))
  92. num_lines = len(lines)
  93. lines_indexes = np.arange(num_lines)
  94. random.shuffle(lines_indexes)
  95. path_seuil = zone_path + "/" + seuil_expe_filename
  96. # check if user select current scene and zone to be part of training data set
  97. for index in lines_indexes:
  98. line = construct_new_line(path_seuil, _interval, lines[index], _sep)
  99. if id_zone in _zones and folder_scene in _scenes:
  100. train_file.write(line)
  101. else:
  102. test_file.write(line)
  103. f.close()
  104. train_file.close()
  105. test_file.close()
  106. def main():
  107. # create database using img folder (generate first time only)
  108. generate_data_svm('test', [20, 100], 'svdne', _scenes=['Appart1opt02', 'Bureau1', 'Cendrier', 'EchecsBas', 'PNDVuePlongeante', 'SdbCentre'], _zones=[2, 3, 7, 8, 9, 10, 15, 0])
  109. if __name__== "__main__":
  110. main()