123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Fri Sep 14 21:02:42 2018
- @author: jbuisine
- """
- from __future__ import print_function
- import sys, os, getopt
- import numpy as np
- import random
- import time
- import json
- from PIL import Image
- from ipfml import processing, metrics, utils
- import ipfml.iqa.fr as fr_iqa
- from skimage import color
- import matplotlib.pyplot as plt
- from modules.utils.data import get_svd_data
- from modules.utils import config as cfg
- # getting configuration information
- config_filename = cfg.config_filename
- zone_folder = cfg.zone_folder
- min_max_filename = cfg.min_max_filename_extension
- # define all scenes values
- scenes_list = cfg.scenes_names
- scenes_indices = cfg.scenes_indices
- choices = cfg.normalization_choices
- path = cfg.dataset_path
- zones = cfg.zones_indices
- seuil_expe_filename = cfg.seuil_expe_filename
- metric_choices = cfg.metric_choices_labels
- max_nb_bits = 8
- error_data_choices = ['mae', 'mse', 'ssim', 'psnr']
- def get_error_distance(p_error, y_true, y_test):
- noise_method = None
- function_name = p_error
- try:
- error_method = getattr(fr_iqa, function_name)
- except AttributeError:
- raise NotImplementedError("Error `{}` not implement `{}`".format(fr_iqa.__name__, function_name))
- return error_method(y_true, y_test)
- def display_svd_values(p_scene, p_interval, p_indices, p_metric, p_mode, p_step, p_norm, p_error, p_ylim):
- """
- @brief Method which gives information about svd curves from zone of picture
- @param p_scene, scene expected to show svd values
- @param p_interval, interval [begin, end] of svd data to display
- @param p_interval, interval [begin, end] of samples or minutes from render generation engine
- @param p_metric, metric computed to show
- @param p_mode, normalization's mode
- @param p_norm, normalization or not of selected svd data
- @param p_error, error metric used to display
- @param p_ylim, ylim choice to better display of data
- @return nothing
- """
- max_value_svd = 0
- min_value_svd = sys.maxsize
- image_indices = []
- scenes = os.listdir(path)
- # remove min max file from scenes folder
- scenes = [s for s in scenes if min_max_filename not in s]
- begin_data, end_data = p_interval
- begin_index, end_index = p_indices
- data_min_max_filename = os.path.join(path, p_metric + min_max_filename)
- # go ahead each scenes
- for id_scene, folder_scene in enumerate(scenes):
- if p_scene == folder_scene:
- scene_path = os.path.join(path, folder_scene)
- config_file_path = os.path.join(scene_path, config_filename)
- with open(config_file_path, "r") as config_file:
- last_image_name = config_file.readline().strip()
- prefix_image_name = config_file.readline().strip()
- start_index_image = config_file.readline().strip()
- end_index_image = config_file.readline().strip()
- step_counter = int(config_file.readline().strip())
- # construct each zones folder name
- zones_folder = []
- # get zones list info
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- current_zone = "zone"+index_str
- zones_folder.append(current_zone)
- images_data = []
- images_indices = []
- threshold_learned_zones = []
- for id, zone_folder in enumerate(zones_folder):
- # get threshold information
- zone_path = os.path.join(scene_path, zone_folder)
- path_seuil = os.path.join(zone_path, seuil_expe_filename)
- # open treshold path and get this information
- with open(path_seuil, "r") as seuil_file:
- threshold_learned = int(seuil_file.readline().strip())
- threshold_learned_zones.append(threshold_learned)
- current_counter_index = int(start_index_image)
- end_counter_index = int(end_index_image)
- threshold_mean = np.mean(np.asarray(threshold_learned_zones))
- threshold_image_found = False
- file_path = os.path.join(scene_path, prefix_image_name + "{}.png")
- svd_data = []
- while(current_counter_index <= end_counter_index):
- current_counter_index_str = str(current_counter_index)
- while len(start_index_image) > len(current_counter_index_str):
- current_counter_index_str = "0" + current_counter_index_str
- image_path = file_path.format(str(current_counter_index_str))
- img = Image.open(image_path)
- svd_values = get_svd_data(p_metric, img)
- if p_norm:
- svd_values = svd_values[begin:end]
- # update min max values
- min_value = svd_values.min()
- max_value = svd_values.max()
- if min_value < min_value_svd:
- min_value_svd = min_value
- if max_value > min_value_svd:
- max_value_svd = max_value
- # keep in memory used data
- if current_counter_index % p_step == 0:
- if current_counter_index >= begin_index and current_counter_index <= end_index:
- images_indices.append(current_counter_index_str)
- svd_data.append(svd_values)
- if threshold_mean < int(current_counter_index) and not threshold_image_found:
- threshold_image_found = True
- threshold_image_zone = current_counter_index_str
- current_counter_index += step_counter
- print('%.2f%%' % (current_counter_index / end_counter_index * 100))
- sys.stdout.write("\033[F")
- # all indices of picture to plot
- print(images_indices)
- previous_data = []
- error_data = [0.]
- for id, data in enumerate(svd_data):
- current_data = data
- if p_mode == 'svdn':
- current_data = utils.normalize_arr(current_data)
- if p_mode == 'svdne':
- current_data = utils.normalize_arr_with_range(current_data, min_value_svd, max_value_svd)
- images_data.append(current_data)
- # use of whole image data for computation of ssim or psnr
- if p_error == 'ssim' or p_error == 'psnr':
- image_path = file_path.format(str(current_id))
- current_data = np.asarray(Image.open(image_path))
- if len(previous_data) > 0:
- current_error = get_error_distance(p_error, previous_data, current_data)
- error_data.append(current_error)
- if len(previous_data) == 0:
- previous_data = current_data
- # display all data using matplotlib (configure plt)
- gridsize = (3, 2)
- # fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(30, 22))
- fig = plt.figure(figsize=(30, 22))
- ax1 = plt.subplot2grid(gridsize, (0, 0), colspan=2, rowspan=2)
- ax2 = plt.subplot2grid(gridsize, (2, 0), colspan=2)
- ax1.set_title(p_scene + ' scene interval information SVD['+ str(begin_data) +', '+ str(end_data) +'], from scenes indices [' + str(begin_index) + ', '+ str(end_index) + ']' + p_metric + ' metric, ' + p_mode + ', with step of ' + str(p_step) + ', svd norm ' + str(p_norm), fontsize=20)
- ax1.set_ylabel('Image samples or time (minutes) generation', fontsize=14)
- ax1.set_xlabel('Vector features', fontsize=16)
- for id, data in enumerate(images_data):
- p_label = p_scene + '_' + str(images_indices[id]) + " | " + p_error + ": " + str(error_data[id])
- if images_indices[id] == threshold_image_zone:
- ax1.plot(data, label=p_label, lw=4, color='red')
- else:
- ax1.plot(data, label=p_label)
- ax1.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2, fontsize=14)
- start_ylim, end_ylim = p_ylim
- ax1.set_ylim(start_ylim, end_ylim)
- ax2.set_title(p_error + " information for whole step images")
- ax2.set_ylabel(p_error + ' error')
- ax2.set_xlabel('Number of samples per pixels or times')
- ax2.set_xticks(range(len(images_indices)))
- ax2.set_xticklabels(list(map(int, images_indices)))
- ax2.plot(error_data)
- plt.show()
- def main():
- # by default p_step value is 10 to enable all photos
- p_step = 10
- p_ylim = (0, 1)
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python display_svd_data_scene.py --scene A --interval "0,800" --indices "0, 900" --metric lab --mode svdne --step 50 --norm 0 --error mae --ylim "0, 0.1"')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "hs:i:i:z:l:m:s:n:e:y", ["help=", "scene=", "interval=", "indices=", "metric=", "mode=", "step=", "norm=", "error=", "ylim="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python display_svd_data_scene.py --scene A --interval "0,800" --indices "0, 900" --metric lab --mode svdne --step 50 --norm 0 --error mae --ylim "0, 0.1"')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python display_svd_data_scene.py --scene A --interval "0,800" --indices "0, 900" --metric lab --mode svdne --step 50 --norm 0 --error mae --ylim "0, 0.1"')
- sys.exit()
- elif o in ("-s", "--scene"):
- p_scene = a
- if p_scene not in scenes_indices:
- assert False, "Invalid scene choice"
- else:
- p_scene = scenes_list[scenes_indices.index(p_scene)]
- elif o in ("-i", "--interval"):
- p_interval = list(map(int, a.split(',')))
- elif o in ("-i", "--indices"):
- p_indices = list(map(int, a.split(',')))
- elif o in ("-m", "--metric"):
- p_metric = a
- if p_metric not in metric_choices:
- assert False, "Invalid metric choice"
- elif o in ("-m", "--mode"):
- p_mode = a
- if p_mode not in choices:
- assert False, "Invalid normalization choice, expected ['svd', 'svdn', 'svdne']"
- elif o in ("-s", "--step"):
- p_step = int(a)
- elif o in ("-n", "--norm"):
- p_norm = int(a)
- elif o in ("-e", "--error"):
- p_error = a
- elif o in ("-y", "--ylim"):
- p_ylim = list(map(float, a.split(',')))
- else:
- assert False, "unhandled option"
- display_svd_values(p_scene, p_interval, p_indices, p_metric, p_mode, p_step, p_norm, p_error, p_ylim)
- if __name__== "__main__":
- main()
|