123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- # main imports
- import sys, os, argparse
- import numpy as np
- import random
- import time
- import json
- # image processing imports
- from PIL import Image
- from skimage import color
- import matplotlib.pyplot as plt
- from ipfml.processing import segmentation, transform, compression
- from ipfml import utils
- # modules and config imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- from modules.utils import data as dt
- from data_attributes import get_image_features
- # variables and parameters
- zone_folder = cfg.zone_folder
- min_max_filename = cfg.min_max_filename_extension
- # define all scenes values
- scenes_list = cfg.scenes_names
- scenes_indices = cfg.scenes_indices
- norm_choices = cfg.normalization_choices
- path = cfg.dataset_path
- zones = cfg.zones_indices
- seuil_expe_filename = cfg.seuil_expe_filename
- features_choices = cfg.features_choices_labels
- def display_data_scenes(data_type, p_scene, p_kind):
- """
- @brief Method which displays data from scene
- @param data_type, feature choice
- @param scene, scene choice
- @param mode, normalization choice
- @return nothing
- """
- scenes = os.listdir(path)
- # remove min max file from scenes folder
- scenes = [s for s in scenes if min_max_filename not in s]
- # go ahead each scenes
- for folder_scene in scenes:
- if p_scene == folder_scene:
- print(folder_scene)
- scene_path = os.path.join(path, folder_scene)
- # construct each zones folder name
- zones_folder = []
- # get zones list info
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- current_zone = "zone"+index_str
- zones_folder.append(current_zone)
- zones_images_data = []
- threshold_info = []
- # get all images of folder
- scene_images = sorted([os.path.join(scene_path, img) for img in os.listdir(scene_path) if cfg.scene_image_extension in img])
- start_image_path = scene_images[0]
- end_image_path = scene_images[-1]
- start_quality_image = dt.get_scene_image_quality(scene_images[0])
- end_quality_image = dt.get_scene_image_quality(scene_images[-1])
- for id_zone, zone_folder in enumerate(zones_folder):
- zone_path = os.path.join(scene_path, zone_folder)
- # get threshold information
- path_seuil = os.path.join(zone_path, seuil_expe_filename)
- # open treshold path and get this information
- with open(path_seuil, "r") as seuil_file:
- threshold_learned = int(seuil_file.readline().strip())
- threshold_image_found = False
- for img_path in scene_images:
- current_quality_image = dt.get_scene_image_quality(img_path)
- if threshold_learned < int(current_quality_image) and not threshold_image_found:
- threshold_image_found = True
- threshold_image_path = img_path
- threshold_image = dt.get_scene_image_postfix(img_path)
- threshold_info.append(threshold_image)
- # all indexes of picture to plot
- images_path = [start_image_path, threshold_image_path, end_image_path]
- images_data = []
- for img_path in images_path:
- current_img = Image.open(img_path)
- img_blocks = segmentation.divide_in_blocks(current_img, (200, 200))
- # getting expected block id
- block = img_blocks[id_zone]
- data = get_image_features(data_type, block)
- ##################
- # Data mode part #
- ##################
- # modify data depending mode
- if p_kind == 'svdn':
- data = utils.normalize_arr(data)
- if p_kind == 'svdne':
- path_min_max = os.path.join(path, data_type + min_max_filename)
- with open(path_min_max, 'r') as f:
- min_val = float(f.readline())
- max_val = float(f.readline())
- data = utils.normalize_arr_with_range(data, min_val, max_val)
- # append of data
- images_data.append(data)
- zones_images_data.append(images_data)
- fig=plt.figure(figsize=(8, 8))
- fig.suptitle(data_type + " values for " + p_scene + " scene (normalization : " + p_kind + ")", fontsize=20)
- for id, data in enumerate(zones_images_data):
- fig.add_subplot(4, 4, (id + 1))
- plt.plot(data[0], label='Noisy_' + start_quality_image)
- plt.plot(data[1], label='Threshold_' + threshold_info[id])
- plt.plot(data[2], label='Reference_' + end_quality_image)
- plt.ylabel(data_type + ' SVD, ZONE_' + str(id + 1), fontsize=18)
- plt.xlabel('Vector features', fontsize=18)
- plt.legend(bbox_to_anchor=(0.5, 1), loc=2, borderaxespad=0.2, fontsize=18)
- plt.ylim(0, 0.1)
- plt.show()
- def main():
- parser = argparse.ArgumentParser(description="Display zones curves of feature on scene ")
- parser.add_argument('--feature', type=str, help='feature data choice', choices=features_choices)
- parser.add_argument('--scene', type=str, help='scene index to use', choices=scenes_indices)
- parser.add_argument('--kind', type=str, help='Kind of normalization level wished', choices=norm_choices)
- args = parser.parse_args()
- p_feature = args.feature
- p_kind = args.kind
- p_scene = scenes_list[scenes_indices.index(args.scene)]
- display_data_scenes(p_feature, p_scene, p_kind)
- if __name__== "__main__":
- main()
|