Parcourir la source

Initial commit

Jérôme BUISINE il y a 5 ans
commit
51df1aa9fc
3 fichiers modifiés avec 200 ajouts et 0 suppressions
  1. 3 0
      .gitignore
  2. 190 0
      ganAtariImage.py
  3. 7 0
      requirements.txt

+ 3 - 0
.gitignore

@@ -0,0 +1,3 @@
+runs
+.python-version
+.ipynb_checkpoints

+ 190 - 0
ganAtariImage.py

@@ -0,0 +1,190 @@
+#!/usr/bin/env python
+import random
+import argparse
+import cv2
+
+import torch
+import torch.nn as nn
+import torch.optim as optim
+from tensorboardX import SummaryWriter
+
+import torchvision.utils as vutils
+
+import gym
+import gym.spaces
+
+import numpy as np
+
+log = gym.logger
+log.set_level(gym.logger.INFO)
+
+LATENT_VECTOR_SIZE = 100
+DISCR_FILTERS = 64
+GENER_FILTERS = 64
+BATCH_SIZE = 16
+
+# dimension input image will be rescaled
+IMAGE_SIZE = 64
+
+LEARNING_RATE = 0.0001
+REPORT_EVERY_ITER = 100
+SAVE_IMAGE_EVERY_ITER = 200
+
+
+class InputWrapper(gym.ObservationWrapper):
+    """
+    Preprocessing of input numpy array:
+    1. resize image into predefined size
+    2. move color channel axis to a first place
+    """
+    def __init__(self, *args):
+        super(InputWrapper, self).__init__(*args)
+        assert isinstance(self.observation_space, gym.spaces.Box)
+        old_space = self.observation_space
+        self.observation_space = gym.spaces.Box(self.observation(old_space.low), self.observation(old_space.high),
+                                                dtype=np.float32)
+
+    def observation(self, observation):
+        # resize image
+        new_obs = cv2.resize(observation, (IMAGE_SIZE, IMAGE_SIZE))
+        # transform (210, 160, 3) -> (3, 210, 160)
+        new_obs = np.moveaxis(new_obs, 2, 0)
+        return new_obs.astype(np.float32)
+
+
+class Discriminator(nn.Module):
+    def __init__(self, input_shape):
+        super(Discriminator, self).__init__()
+        # this pipe converges image into the single number
+        self.conv_pipe = nn.Sequential(
+            nn.Conv2d(in_channels=input_shape[0], out_channels=DISCR_FILTERS,
+                      kernel_size=4, stride=2, padding=1),
+            nn.ReLU(),
+            nn.Conv2d(in_channels=DISCR_FILTERS, out_channels=DISCR_FILTERS*2,
+                      kernel_size=4, stride=2, padding=1),
+            nn.BatchNorm2d(DISCR_FILTERS*2),
+            nn.ReLU(),
+            nn.Conv2d(in_channels=DISCR_FILTERS * 2, out_channels=DISCR_FILTERS * 4,
+                      kernel_size=4, stride=2, padding=1),
+            nn.BatchNorm2d(DISCR_FILTERS * 4),
+            nn.ReLU(),
+            nn.Conv2d(in_channels=DISCR_FILTERS * 4, out_channels=DISCR_FILTERS * 8,
+                      kernel_size=4, stride=2, padding=1),
+            nn.BatchNorm2d(DISCR_FILTERS * 8),
+            nn.ReLU(),
+            nn.Conv2d(in_channels=DISCR_FILTERS * 8, out_channels=1,
+                      kernel_size=4, stride=1, padding=0),
+            nn.Sigmoid()
+        )
+
+    def forward(self, x):
+        conv_out = self.conv_pipe(x)
+        return conv_out.view(-1, 1).squeeze(dim=1)
+
+
+class Generator(nn.Module):
+    def __init__(self, output_shape):
+        super(Generator, self).__init__()
+        # pipe deconvolves input vector into (3, 64, 64) image
+        self.pipe = nn.Sequential(
+            nn.ConvTranspose2d(in_channels=LATENT_VECTOR_SIZE, out_channels=GENER_FILTERS * 8,
+                               kernel_size=4, stride=1, padding=0),
+            nn.BatchNorm2d(GENER_FILTERS * 8),
+            nn.ReLU(),
+            nn.ConvTranspose2d(in_channels=GENER_FILTERS * 8, out_channels=GENER_FILTERS * 4,
+                               kernel_size=4, stride=2, padding=1),
+            nn.BatchNorm2d(GENER_FILTERS * 4),
+            nn.ReLU(),
+            nn.ConvTranspose2d(in_channels=GENER_FILTERS * 4, out_channels=GENER_FILTERS * 2,
+                               kernel_size=4, stride=2, padding=1),
+            nn.BatchNorm2d(GENER_FILTERS * 2),
+            nn.ReLU(),
+            nn.ConvTranspose2d(in_channels=GENER_FILTERS * 2, out_channels=GENER_FILTERS,
+                               kernel_size=4, stride=2, padding=1),
+            nn.BatchNorm2d(GENER_FILTERS),
+            nn.ReLU(),
+            nn.ConvTranspose2d(in_channels=GENER_FILTERS, out_channels=output_shape[0],
+                               kernel_size=4, stride=2, padding=1),
+            nn.Tanh()
+        )
+
+    def forward(self, x):
+        return self.pipe(x)
+
+# here we have to generate our batches from final or noisy synthesis images
+def iterate_batches(envs, batch_size=BATCH_SIZE):
+    batch = [e.reset() for e in envs]
+    env_gen = iter(lambda: random.choice(envs), None)
+
+    while True:
+        e = next(env_gen)
+        obs, reward, is_done, _ = e.step(e.action_space.sample())
+        if np.mean(obs) > 0.01:
+            batch.append(obs)
+        if len(batch) == batch_size:
+            # Normalising input between -1 to 1
+            batch_np = np.array(batch, dtype=np.float32) * 2.0 / 255.0 - 1.0
+            yield torch.tensor(batch_np)
+            batch.clear()
+        if is_done:
+            e.reset()
+
+
+if __name__ == "__main__":
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--cuda", default=False, action='store_true', help="Enable cuda computation")
+    args = parser.parse_args()
+
+    device = torch.device("cuda" if args.cuda else "cpu")
+    envs = [InputWrapper(gym.make(name)) for name in ('Breakout-v0', 'AirRaid-v0', 'Pong-v0')]
+    input_shape = envs[0].observation_space.shape
+
+    net_discr = Discriminator(input_shape=input_shape).to(device)
+    net_gener = Generator(output_shape=input_shape).to(device)
+    print(net_gener)
+
+    objective = nn.BCELoss()
+    gen_optimizer = optim.Adam(params=net_gener.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
+    dis_optimizer = optim.Adam(params=net_discr.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
+    writer = SummaryWriter()
+
+    gen_losses = []
+    dis_losses = []
+    iter_no = 0
+
+    true_labels_v = torch.ones(BATCH_SIZE, dtype=torch.float32, device=device)
+    fake_labels_v = torch.zeros(BATCH_SIZE, dtype=torch.float32, device=device)
+
+    for batch_v in iterate_batches(envs):
+        # generate extra fake samples, input is 4D: batch, filters, x, y
+        gen_input_v = torch.FloatTensor(BATCH_SIZE, LATENT_VECTOR_SIZE, 1, 1).normal_(0, 1).to(device)
+        batch_v = batch_v.to(device)
+        gen_output_v = net_gener(gen_input_v)
+
+        # train discriminator
+        dis_optimizer.zero_grad()
+        dis_output_true_v = net_discr(batch_v)
+        dis_output_fake_v = net_discr(gen_output_v.detach())
+        dis_loss = objective(dis_output_true_v, true_labels_v) + objective(dis_output_fake_v, fake_labels_v)
+        dis_loss.backward()
+        dis_optimizer.step()
+        dis_losses.append(dis_loss.item())
+
+        # train generator
+        gen_optimizer.zero_grad()
+        dis_output_v = net_discr(gen_output_v)
+        gen_loss_v = objective(dis_output_v, true_labels_v)
+        gen_loss_v.backward()
+        gen_optimizer.step()
+        gen_losses.append(gen_loss_v.item())
+
+        iter_no += 1
+        if iter_no % REPORT_EVERY_ITER == 0:
+            log.info("Iter %d: gen_loss=%.3e, dis_loss=%.3e", iter_no, np.mean(gen_losses), np.mean(dis_losses))
+            writer.add_scalar("gen_loss", np.mean(gen_losses), iter_no)
+            writer.add_scalar("dis_loss", np.mean(dis_losses), iter_no)
+            gen_losses = []
+            dis_losses = []
+        if iter_no % SAVE_IMAGE_EVERY_ITER == 0:
+            writer.add_image("fake", vutils.make_grid(gen_output_v.data[:64], normalize=True), iter_no)
+            writer.add_image("real", vutils.make_grid(batch_v.data[:64], normalize=True), iter_no)

+ 7 - 0
requirements.txt

@@ -0,0 +1,7 @@
+gym
+gym[atari]
+torch
+torchvision
+tensorflow
+tensorboardX
+opencv-python