123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- #!/usr/bin/env python
- import random
- import argparse
- import cv2
- import torch
- import torch.nn as nn
- import torch.optim as optim
- from tensorboardX import SummaryWriter
- import torchvision.utils as vutils
- import gym
- import gym.spaces
- import numpy as np
- log = gym.logger
- log.set_level(gym.logger.INFO)
- LATENT_VECTOR_SIZE = 100
- DISCR_FILTERS = 64
- GENER_FILTERS = 64
- BATCH_SIZE = 16
- # dimension input image will be rescaled
- IMAGE_SIZE = 64
- LEARNING_RATE = 0.0001
- REPORT_EVERY_ITER = 100
- SAVE_IMAGE_EVERY_ITER = 200
- class InputWrapper(gym.ObservationWrapper):
- """
- Preprocessing of input numpy array:
- 1. resize image into predefined size
- 2. move color channel axis to a first place
- """
- def __init__(self, *args):
- super(InputWrapper, self).__init__(*args)
- assert isinstance(self.observation_space, gym.spaces.Box)
- old_space = self.observation_space
- self.observation_space = gym.spaces.Box(self.observation(old_space.low), self.observation(old_space.high),
- dtype=np.float32)
- def observation(self, observation):
- # resize image
- new_obs = cv2.resize(observation, (IMAGE_SIZE, IMAGE_SIZE))
- # transform (210, 160, 3) -> (3, 210, 160)
- new_obs = np.moveaxis(new_obs, 2, 0)
- return new_obs.astype(np.float32)
- class Discriminator(nn.Module):
- def __init__(self, input_shape):
- super(Discriminator, self).__init__()
- # this pipe converges image into the single number
- self.conv_pipe = nn.Sequential(
- nn.Conv2d(in_channels=input_shape[0], out_channels=DISCR_FILTERS,
- kernel_size=4, stride=2, padding=1),
- nn.ReLU(),
- nn.Conv2d(in_channels=DISCR_FILTERS, out_channels=DISCR_FILTERS*2,
- kernel_size=4, stride=2, padding=1),
- nn.BatchNorm2d(DISCR_FILTERS*2),
- nn.ReLU(),
- nn.Conv2d(in_channels=DISCR_FILTERS * 2, out_channels=DISCR_FILTERS * 4,
- kernel_size=4, stride=2, padding=1),
- nn.BatchNorm2d(DISCR_FILTERS * 4),
- nn.ReLU(),
- nn.Conv2d(in_channels=DISCR_FILTERS * 4, out_channels=DISCR_FILTERS * 8,
- kernel_size=4, stride=2, padding=1),
- nn.BatchNorm2d(DISCR_FILTERS * 8),
- nn.ReLU(),
- nn.Conv2d(in_channels=DISCR_FILTERS * 8, out_channels=1,
- kernel_size=4, stride=1, padding=0),
- nn.Sigmoid()
- )
- def forward(self, x):
- conv_out = self.conv_pipe(x)
- return conv_out.view(-1, 1).squeeze(dim=1)
- class Generator(nn.Module):
- def __init__(self, output_shape):
- super(Generator, self).__init__()
- # pipe deconvolves input vector into (3, 64, 64) image
- self.pipe = nn.Sequential(
- nn.ConvTranspose2d(in_channels=LATENT_VECTOR_SIZE, out_channels=GENER_FILTERS * 8,
- kernel_size=4, stride=1, padding=0),
- nn.BatchNorm2d(GENER_FILTERS * 8),
- nn.ReLU(),
- nn.ConvTranspose2d(in_channels=GENER_FILTERS * 8, out_channels=GENER_FILTERS * 4,
- kernel_size=4, stride=2, padding=1),
- nn.BatchNorm2d(GENER_FILTERS * 4),
- nn.ReLU(),
- nn.ConvTranspose2d(in_channels=GENER_FILTERS * 4, out_channels=GENER_FILTERS * 2,
- kernel_size=4, stride=2, padding=1),
- nn.BatchNorm2d(GENER_FILTERS * 2),
- nn.ReLU(),
- nn.ConvTranspose2d(in_channels=GENER_FILTERS * 2, out_channels=GENER_FILTERS,
- kernel_size=4, stride=2, padding=1),
- nn.BatchNorm2d(GENER_FILTERS),
- nn.ReLU(),
- nn.ConvTranspose2d(in_channels=GENER_FILTERS, out_channels=output_shape[0],
- kernel_size=4, stride=2, padding=1),
- nn.Tanh()
- )
- def forward(self, x):
- return self.pipe(x)
- # here we have to generate our batches from final or noisy synthesis images
- def iterate_batches(envs, batch_size=BATCH_SIZE):
- batch = [e.reset() for e in envs]
- env_gen = iter(lambda: random.choice(envs), None)
- while True:
- e = next(env_gen)
- obs, reward, is_done, _ = e.step(e.action_space.sample())
- if np.mean(obs) > 0.01:
- batch.append(obs)
- if len(batch) == batch_size:
- # Normalising input between -1 to 1
- batch_np = np.array(batch, dtype=np.float32) * 2.0 / 255.0 - 1.0
- yield torch.tensor(batch_np)
- batch.clear()
- if is_done:
- e.reset()
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("--cuda", default=False, action='store_true', help="Enable cuda computation")
- args = parser.parse_args()
- device = torch.device("cuda" if args.cuda else "cpu")
- envs = [InputWrapper(gym.make(name)) for name in ('Breakout-v0', 'AirRaid-v0', 'Pong-v0')]
- input_shape = envs[0].observation_space.shape
- print(input_shape)
- net_discr = Discriminator(input_shape=input_shape).to(device)
- net_gener = Generator(output_shape=input_shape).to(device)
- print(net_gener)
- objective = nn.BCELoss()
- gen_optimizer = optim.Adam(params=net_gener.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
- dis_optimizer = optim.Adam(params=net_discr.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
- writer = SummaryWriter()
- gen_losses = []
- dis_losses = []
- iter_no = 0
- true_labels_v = torch.ones(BATCH_SIZE, dtype=torch.float32, device=device)
- fake_labels_v = torch.zeros(BATCH_SIZE, dtype=torch.float32, device=device)
- for batch_v in iterate_batches(envs):
- # generate extra fake samples, input is 4D: batch, filters, x, y
- gen_input_v = torch.FloatTensor(BATCH_SIZE, LATENT_VECTOR_SIZE, 1, 1).normal_(0, 1).to(device)
- batch_v = batch_v.to(device)
- gen_output_v = net_gener(gen_input_v)
- # train discriminator
- dis_optimizer.zero_grad()
- dis_output_true_v = net_discr(batch_v)
- dis_output_fake_v = net_discr(gen_output_v.detach())
- dis_loss = objective(dis_output_true_v, true_labels_v) + objective(dis_output_fake_v, fake_labels_v)
- dis_loss.backward()
- dis_optimizer.step()
- dis_losses.append(dis_loss.item())
- # train generator
- gen_optimizer.zero_grad()
- dis_output_v = net_discr(gen_output_v)
- gen_loss_v = objective(dis_output_v, true_labels_v)
- gen_loss_v.backward()
- gen_optimizer.step()
- gen_losses.append(gen_loss_v.item())
- iter_no += 1
- if iter_no % REPORT_EVERY_ITER == 0:
- log.info("Iter %d: gen_loss=%.3e, dis_loss=%.3e", iter_no, np.mean(gen_losses), np.mean(dis_losses))
- writer.add_scalar("gen_loss", np.mean(gen_losses), iter_no)
- writer.add_scalar("dis_loss", np.mean(dis_losses), iter_no)
- gen_losses = []
- dis_losses = []
- if iter_no % SAVE_IMAGE_EVERY_ITER == 0:
- writer.add_image("fake", vutils.make_grid(gen_output_v.data[:64], normalize=True), iter_no)
- writer.add_image("real", vutils.make_grid(batch_v.data[:64], normalize=True), iter_no)
|