|
@@ -3,19 +3,20 @@ import logging
|
|
import os
|
|
import os
|
|
import random
|
|
import random
|
|
import numpy as np
|
|
import numpy as np
|
|
|
|
+import math
|
|
|
|
|
|
# module imports
|
|
# module imports
|
|
-from macop.solutions.discrete import BinarySolution
|
|
|
|
-from macop.evaluators.discrete.mono import UBQPEvaluator
|
|
|
|
|
|
+from macop.solutions.continuous import ContinuousSolution
|
|
|
|
+from macop.evaluators.continuous.mono import ZdtEvaluator
|
|
|
|
|
|
-from macop.operators.continuous.mutators import SimpleMutation
|
|
|
|
-from macop.operators.discrete.mutators import SimpleBinaryMutation
|
|
|
|
|
|
+from macop.operators.continuous.mutators import PolynomialMutation
|
|
|
|
+from macop.operators.continuous.crossovers import BasicDifferentialEvolutionCrossover
|
|
|
|
|
|
from macop.policies.classicals import RandomPolicy
|
|
from macop.policies.classicals import RandomPolicy
|
|
|
|
|
|
from macop.algorithms.mono import IteratedLocalSearch as ILS
|
|
from macop.algorithms.mono import IteratedLocalSearch as ILS
|
|
from macop.algorithms.mono import HillClimberFirstImprovment
|
|
from macop.algorithms.mono import HillClimberFirstImprovment
|
|
-from macop.callbacks.classicals import BasicCheckpoint
|
|
|
|
|
|
+from macop.callbacks.classicals import ContinuousCheckpoint
|
|
|
|
|
|
if not os.path.exists('data'):
|
|
if not os.path.exists('data'):
|
|
os.makedirs('data')
|
|
os.makedirs('data')
|
|
@@ -26,52 +27,47 @@ logging.basicConfig(format='%(asctime)s %(message)s', filename='data/example.log
|
|
random.seed(42)
|
|
random.seed(42)
|
|
|
|
|
|
# usefull instance data
|
|
# usefull instance data
|
|
-n = 100
|
|
|
|
-ubqp_instance_file = 'instances/ubqp/ubqp_instance.txt'
|
|
|
|
-filepath = "data/checkpoints_ubqp.csv"
|
|
|
|
|
|
+n = 10
|
|
|
|
+filepath = "data/checkpoints_zdt_Rosenbrock.csv"
|
|
|
|
+problem_interval = -10, 10 # fixed value interval (avoid infinite)
|
|
|
|
|
|
|
|
|
|
-# default validator
|
|
|
|
|
|
+# check each value in order to validate
|
|
def validator(solution):
|
|
def validator(solution):
|
|
|
|
+
|
|
|
|
+ mini, maxi = problem_interval
|
|
|
|
+
|
|
|
|
+ for x in solution.data:
|
|
|
|
+ if x < mini or x > maxi:
|
|
|
|
+ return False
|
|
|
|
+
|
|
return True
|
|
return True
|
|
|
|
|
|
# define init random solution
|
|
# define init random solution
|
|
def init():
|
|
def init():
|
|
- return BinarySolution.random(n, validator)
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-filepath = "data/checkpoints.csv"
|
|
|
|
|
|
+ return ContinuousSolution.random(n, problem_interval, validator)
|
|
|
|
|
|
def main():
|
|
def main():
|
|
|
|
|
|
- # load UBQP instance
|
|
|
|
- with open(ubqp_instance_file, 'r') as f:
|
|
|
|
-
|
|
|
|
- lines = f.readlines()
|
|
|
|
-
|
|
|
|
- # get all string floating point values of matrix
|
|
|
|
- Q_data = ''.join([ line.replace('\n', '') for line in lines[8:] ])
|
|
|
|
-
|
|
|
|
- # load the concatenate obtained string
|
|
|
|
- Q_matrix = np.fromstring(Q_data, dtype=float, sep=' ').reshape(n, n)
|
|
|
|
-
|
|
|
|
- print(f'Q_matrix shape: {Q_matrix.shape}')
|
|
|
|
|
|
+ # Rosenbrock function with a=1 and b=100 (see https://en.wikipedia.org/wiki/Rosenbrock_function)
|
|
|
|
+ Rosenbrock_function = lambda s: sum([ 100 * math.pow(s.data[i + 1] - (math.pow(s.data[i], 2)), 2) + math.pow((1 - s.data[i]), 2) for i in range(len(s.data) - 1) ])
|
|
|
|
|
|
- operators = [SimpleBinaryMutation(), SimpleMutation()]
|
|
|
|
|
|
+ operators = [PolynomialMutation(interval=problem_interval), BasicDifferentialEvolutionCrossover(interval=problem_interval)]
|
|
policy = RandomPolicy(operators)
|
|
policy = RandomPolicy(operators)
|
|
- callback = BasicCheckpoint(every=5, filepath=filepath)
|
|
|
|
- evaluator = UBQPEvaluator(data={'Q': Q_matrix})
|
|
|
|
|
|
+ callback = ContinuousCheckpoint(every=5, filepath=filepath)
|
|
|
|
+ evaluator = ZdtEvaluator(data={'f': Rosenbrock_function})
|
|
|
|
|
|
# passing global evaluation param from ILS
|
|
# passing global evaluation param from ILS
|
|
- hcfi = HillClimberFirstImprovment(init, evaluator, operators, policy, validator, maximise=True, verbose=True)
|
|
|
|
- algo = ILS(init, evaluator, operators, policy, validator, localSearch=hcfi, maximise=True, verbose=True)
|
|
|
|
|
|
+ hcfi = HillClimberFirstImprovment(init, evaluator, operators, policy, validator, maximise=False, verbose=True)
|
|
|
|
+ algo = ILS(init, evaluator, operators, policy, validator, localSearch=hcfi, maximise=False, verbose=True)
|
|
|
|
|
|
# add callback into callback list
|
|
# add callback into callback list
|
|
algo.addCallback(callback)
|
|
algo.addCallback(callback)
|
|
|
|
|
|
- bestSol = algo.run(10000, ls_evaluations=100)
|
|
|
|
|
|
+ bestSol = algo.run(100000, ls_evaluations=100)
|
|
|
|
+ print(bestSol.data)
|
|
|
|
|
|
- print('Solution for UBQP instance score is {}'.format(evaluator.compute(bestSol)))
|
|
|
|
|
|
+ print('Solution for Rosenbrock Zdt instance score is {}'.format(evaluator.compute(bestSol)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if __name__ == "__main__":
|
|
main()
|
|
main()
|