123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- """Mono-objective evaluators classes for discrete problem
- """
- # main imports
- from macop.evaluators.base import Evaluator
- class KnapsackEvaluator(Evaluator):
- """Knapsack evaluator class which enables to compute knapsack solution using specific `_data`
- - stores into its `_data` dictionary attritute required measures when computing a knapsack solution
- - `_data['worths']` stores knapsack objects worths information
- - `compute` method enables to compute and associate a score to a given knapsack solution
- Example:
- >>> import random
- >>>
- >>> # binary solution import
- >>> from macop.solutions.discrete import BinarySolution
- >>>
- >>> # evaluator import
- >>> from macop.evaluators.discrete.mono import KnapsackEvaluator
- >>> solution_data = [1, 0, 0, 1, 1, 0, 1, 0]
- >>> size = len(solution_data)
- >>> solution = BinarySolution(solution_data, size)
- >>>
- >>> # evaluator initialization (worths objects passed into data)
- >>> worths = [ random.randint(5, 20) for i in range(size) ]
- >>> evaluator = KnapsackEvaluator(data={'worths': worths})
- >>>
- >>> # compute solution score
- >>> evaluator.compute(solution)
- 40
- """
- def compute(self, solution):
- """Apply the computation of fitness from solution
- Args:
- solution: {:class:`~macop.solutions.base.Solution`} -- Solution instance
-
- Returns:
- {float}: fitness score of solution
- """
- fitness = 0
- for index, elem in enumerate(solution.data):
- fitness += self._data['worths'][index] * elem
- return fitness
- class QAPEvaluator(Evaluator):
- """Quadratic Assignment Problem (QAP) evaluator class which enables to compute qap solution using specific `_data`
- Solutions use for this evaluator are with type of `macop.solutions.discrete.CombinatoryIntegerSolution`
- - stores into its `_data` dictionary attritute required measures when computing a QAP solution
- - `_data['F']` matrix of size n x n with flows data between facilities (stored as numpy array)
- - `_data['D']` matrix of size n x n with distances data between locations (stored as numpy array)
- - `compute` method enables to compute and associate a score to a given QAP solution
- Example:
- >>> import random
- >>> import numpy as np
- >>>
- >>> # combinatory solution import
- >>> from macop.solutions.discrete import CombinatoryIntegerSolution
- >>>
- >>> # evaluator import
- >>> from macop.evaluators.discrete.mono import QAPEvaluator
- >>>
- >>> # define problem data using QAP example instance
- >>> qap_instance_file = 'examples/instances/qap/qap_instance.txt'
- >>> n = 100 # problem size
- >>>
- >>> # loading data
- >>> f = open(qap_instance_file, 'r')
- >>> file_data = f.readlines()
- >>> D_lines = file_data[1:n + 1]
- >>> D_data = ''.join(D_lines).replace('\\n', '')
- >>> F_lines = file_data[n:2 * n + 1]
- >>> F_data = ''.join(F_lines).replace('\\n', '')
- >>> D_matrix = np.fromstring(D_data, dtype=float, sep=' ').reshape(n, n)
- >>> F_matrix = np.fromstring(F_data, dtype=float, sep=' ').reshape(n, n)
- >>> f.close()
- >>>
- >>> # create evaluator instance using loading data
- >>> evaluator = QAPEvaluator(data={'F': F_matrix, 'D': D_matrix})
- >>>
- >>> # create new random combinatory solution using n, the instance QAP size
- >>> solution = CombinatoryIntegerSolution.random(n)
- >>>
- >>> # compute solution score
- >>> evaluator.compute(solution)
- 6397983.0
- """
- def compute(self, solution):
- """Apply the computation of fitness from solution
- Args:
- solution: {:class:`~macop.solutions.base.Solution`} -- QAP solution instance
-
- Returns:
- {float}: fitness score of solution
- """
- fitness = 0
- for index_i, val_i in enumerate(solution.data):
- for index_j, val_j in enumerate(solution.data):
- fitness += self._data['F'][index_i,
- index_j] * self._data['D'][val_i,
- val_j]
- return fitness
- class UBQPEvaluator(Evaluator):
- """Unconstrained Binary Quadratic Programming (UBQP) evaluator class which enables to compute UBQP solution using specific `_data`
- - stores into its `_data` dictionary attritute required measures when computing a UBQP solution
- - `_data['Q']` matrix of size n x n with real values data (stored as numpy array)
- - `compute` method enables to compute and associate a score to a given UBQP solution
- Example:
- >>> import random
- >>> import numpy as np
- >>>
- >>> # binary solution import
- >>> from macop.solutions.discrete import BinarySolution
- >>>
- >>> # evaluator import
- >>> from macop.evaluators.discrete.mono import UBQPEvaluator
- >>>
- >>> # define problem data using UBQP example instance
- >>> ubqp_instance_file = 'examples/instances/ubqp/ubqp_instance.txt'
- >>> n = 100 # problem size
- >>>
- >>> # loading data
- >>> f = open(ubqp_instance_file, 'r')
- >>> file_data = f.readlines()
- >>>
- >>> # get all string floating point values of matrix
- >>> Q_data = ''.join([ line.replace('\\n', '') for line in file_data[8:] ])
- >>> # load the concatenate obtained string
- >>> Q_matrix = np.fromstring(Q_data, dtype=float, sep=' ').reshape(n, n)
- >>> f.close()
- >>>
- >>> # create evaluator instance using loading data
- >>> evaluator = UBQPEvaluator(data={'Q': Q_matrix})
- >>>
- >>> # create new random combinatory solution using n, the instance QAP size
- >>> solution = BinarySolution.random(n)
- >>>
- >>> # compute solution score
- >>> evaluator.compute(solution)
- 477.0
- """
- def compute(self, solution):
- """Apply the computation of fitness from solution
- Args:
- solution: {:class:`~macop.solutions.base.Solution`} -- UBQP solution instance
-
- Returns:
- {float}: fitness score of solution
- """
- fitness = 0
- for index_i, val_i in enumerate(solution.data):
- for index_j, val_j in enumerate(solution.data):
- fitness += self._data['Q'][index_i, index_j] * val_i * val_j
- return fitness
|