123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- """Iterated Local Search Algorithm implementation
- """
- # main imports
- import logging
- # module imports
- from ..Algorithm import Algorithm
- from .LocalSearch import LocalSearch
- class IteratedLocalSearch(Algorithm):
- """Iterated Local Search used to avoid local optima and increave EvE (Exploration vs Exploitation) compromise
- Attributes:
- initalizer: {function} -- basic function strategy to initialize solution
- evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)
- operators: {[Operator]} -- list of operator to use when launching algorithm
- policy: {Policy} -- Policy class implementation strategy to select operators
- validator: {function} -- basic function to check if solution is valid or not under some constraints
- maximise: {bool} -- specify kind of optimization problem
- currentSolution: {Solution} -- current solution managed for current evaluation
- bestSolution: {Solution} -- best solution found so far during running algorithm
- callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
- """
- def run(self, _evaluations, _ls_evaluations=100):
- """
- Run the iterated local search algorithm using local search (EvE compromise)
- Args:
- _evaluations: {int} -- number of global evaluations for ILS
- _ls_evaluations: {int} -- number of Local search evaluations (default: 100)
- Returns:
- {Solution} -- best solution found
- """
- # by default use of mother method to initialize variables
- super().run(_evaluations)
- # enable resuming for ILS
- self.resume()
- # initialize current solution
- self.initRun()
- # passing global evaluation param from ILS
- ls = LocalSearch(self.initializer,
- self.evaluator,
- self.operators,
- self.policy,
- self.validator,
- self.maximise,
- _parent=self)
- # add same callbacks
- for callback in self.callbacks:
- ls.addCallback(callback)
- # local search algorithm implementation
- while not self.stop():
- # create and search solution from local search
- newSolution = ls.run(_ls_evaluations)
- # if better solution than currently, replace it
- if self.isBetter(newSolution):
- self.bestSolution = newSolution
- # number of evaluatins increased from LocalSearch
- # increase number of evaluations and progress are then not necessary there
- #self.increaseEvaluation()
- #self.progress()
- self.information()
- logging.info("End of %s, best solution found %s" %
- (type(self).__name__, self.bestSolution))
- self.end()
- return self.bestSolution
|