123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- """MOEAD sub problem algorithm class
- """
- # main imports
- import logging
- # module imports
- from ..Algorithm import Algorithm
- class MOSubProblem(Algorithm):
- """Specific MO sub problem used into MOEAD
- Attributes:
- index: {int} -- sub problem index
- weights: {[float]} -- sub problems objectives weights
- initalizer: {function} -- basic function strategy to initialize solution
- evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)
- operators: {[Operator]} -- list of operator to use when launching algorithm
- policy: {Policy} -- Policy class implementation strategy to select operators
- validator: {function} -- basic function to check if solution is valid or not under some constraints
- maximise: {bool} -- specify kind of optimization problem
- currentSolution: {Solution} -- current solution managed for current evaluation
- bestSolution: {Solution} -- best solution found so far during running algorithm
- callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
- """
- def __init__(self,
- _index,
- _weights,
- _initalizer,
- _evaluator,
- _operators,
- _policy,
- _validator,
- _maximise=True,
- _parent=None):
- super().__init__(_initalizer, _evaluator, _operators, _policy,
- _validator, _maximise, _parent)
- self.index = _index
- self.weights = _weights
- def run(self, _evaluations):
- """
- Run the local search algorithm
- Args:
- _evaluations: {int} -- number of evaluations
-
- Returns:
- {Solution} -- best solution found
- """
- # by default use of mother method to initialize variables
- super().run(_evaluations)
- # initialize solution if necessary
- if self.bestSolution is None:
- self.initRun()
- # new operators list keep track of current sub problem
- for op in self.operators:
- op.setAlgo(self)
- for _ in range(_evaluations):
- # keep reference of sub problem used
- self.policy.setAlgo(self)
- # update solution using policy
- newSolution = self.update(self.bestSolution)
- # if better solution than currently, replace it
- if self.isBetter(newSolution):
- self.bestSolution = newSolution
- # increase number of evaluations
- self.increaseEvaluation()
- self.progress()
- # stop algorithm if necessary
- if self.stop():
- break
- logging.info("---- Current %s - SCORE %s" %
- (newSolution, newSolution.fitness()))
- logging.info("End of %s, best solution found %s" %
- (type(self).__name__, self.bestSolution))
- return self.bestSolution
|