123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- """Basic Checkpoint class implementation
- """
- # main imports
- import os
- import logging
- import numpy as np
- # module imports
- from .Callback import Callback
- from ..utils.color import macop_text, macop_line
- class BasicCheckpoint(Callback):
- """
- BasicCheckpoint is used for loading previous computations and start again after loading checkpoint
- Attributes:
- algo: {Algorithm} -- main algorithm instance reference
- every: {int} -- checkpoint frequency used (based on number of evaluations)
- filepath: {str} -- file path where checkpoints will be saved
- """
- def run(self):
- """
- Check if necessary to do backup based on `every` variable
- """
- # get current best solution
- solution = self.algo.bestSolution
- currentEvaluation = self.algo.getGlobalEvaluation()
- # backup if necessary
- if currentEvaluation % self.every == 0:
- logging.info("Checkpoint is done into " + self.filepath)
- solutionData = ""
- solutionSize = len(solution.data)
- for index, val in enumerate(solution.data):
- solutionData += str(val)
- if index < solutionSize - 1:
- solutionData += ' '
- line = str(currentEvaluation) + ';' + solutionData + ';' + str(
- solution.fitness()) + ';\n'
- # check if file exists
- if not os.path.exists(self.filepath):
- with open(self.filepath, 'w') as f:
- f.write(line)
- else:
- with open(self.filepath, 'a') as f:
- f.write(line)
- def load(self):
- """
- Load last backup line of solution and set algorithm state (best solution and evaluations) at this backup
- """
- if os.path.exists(self.filepath):
- logging.info('Load best solution from last checkpoint')
- with open(self.filepath) as f:
- # get last line and read data
- lastline = f.readlines()[-1]
- data = lastline.split(';')
- # get evaluation information
- globalEvaluation = int(data[0])
- if self.algo.parent is not None:
- self.algo.parent.numberOfEvaluations = globalEvaluation
- else:
- self.algo.numberOfEvaluations = globalEvaluation
- # get best solution data information
- solutionData = list(map(int, data[1].split(' ')))
- if self.algo.bestSolution is None:
- self.algo.bestSolution = self.algo.initializer()
- self.algo.bestSolution.data = np.array(solutionData)
- self.algo.bestSolution.score = float(data[2])
- print(macop_line())
- print(
- macop_text('Checkpoint found from `{}` file.'.format(
- self.filepath)))
- print(
- macop_text('Restart algorithm from evaluation {}.'.format(
- self.algo.numberOfEvaluations)))
- else:
- print(
- macop_text(
- 'No backup found... Start running algorithm from evaluation 0.'
- ))
- logging.info(
- "Can't load backup... Backup filepath not valid in Checkpoint")
- print(macop_line())
|