123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- """Pareto front Checkpoint class implementation
- """
- # main imports
- import os
- import logging
- import numpy as np
- import sys
- # module imports
- from .Callback import Callback
- from ..utils.color import macop_text, macop_line
- from ..utils.modules import load_class
- class ParetoCheckpoint(Callback):
- """
- Pareto checkpoint is used for loading previous computations and start again after loading checkpoint
- Attributes:
- algo: {Algorithm} -- main algorithm instance reference
- every: {int} -- checkpoint frequency used (based on number of evaluations)
- filepath: {str} -- file path where checkpoints will be saved
- """
- def run(self):
- """
- Check if necessary to do backup based on `every` variable
- """
- # get current population
- pfPop = self.algo.pfPop
- currentEvaluation = self.algo.getGlobalEvaluation()
- # backup if necessary
- if currentEvaluation % self.every == 0:
- logging.info("Checkpoint is done into " + self.filepath)
- with open(self.filepath, 'w') as f:
- for solution in pfPop:
- solutionData = ""
- solutionSize = len(solution.data)
- for index, val in enumerate(solution.data):
- solutionData += str(val)
- if index < solutionSize - 1:
- solutionData += ' '
- line = ''
- for i in range(len(self.algo.evaluator)):
- line += str(solution.scores[i]) + ';'
- line += solutionData + ';\n'
- f.write(line)
- def load(self):
- """
- Load backup lines as population and set algorithm state (population and pareto front) at this backup
- """
- if os.path.exists(self.filepath):
- logging.info('Load best solution from last checkpoint')
- with open(self.filepath) as f:
- # reinit pf population
- self.algo.pfPop = []
- # retrieve class name from algo
- class_name = type(self.algo.population[0]).__name__
- # dynamically load solution class if unknown
- if class_name not in sys.modules:
- load_class(class_name, globals())
- # read data for each line
- for line in f.readlines():
- data = line.replace(';\n', '').split(';')
- nObjectives = len(self.algo.evaluator)
- scores = [float(s) for s in data[0:nObjectives]]
- # get best solution data information
- solutionData = list(map(int, data[-1].split(' ')))
- newSolution = getattr(
- globals()['macop.solutions.' + class_name],
- class_name)(solutionData, len(solutionData))
- newSolution.scores = scores
- self.algo.pfPop.append(newSolution)
- print(
- macop_text(
- 'Load of available pareto front backup from `{}`'.format(
- self.filepath)))
- else:
- print(
- macop_text(
- 'No pareto front found... Start running algorithm with new pareto front population.'
- ))
- logging.info("No pareto front backup used...")
- print(macop_line())
|