123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484 |
- """Multi-objetive classes algorithm
- """
- # main imports
- import logging
- import math
- import numpy as np
- import sys
- from macop.utils.progress import macop_text, macop_line, macop_progress
- # module imports
- from macop.algorithms.base import Algorithm
- from macop.evaluators.discrete.multi import WeightedSum
- class MOEAD(Algorithm):
- """Multi-Ojective Evolutionary Algorithm with Scalar Decomposition
- Attributes:
- mu: {int} -- number of sub problems
- T: {[float]} -- number of neightbors for each sub problem
- nObjectives: {int} -- number of objectives (based of number evaluator)
- initializer: {function} -- basic function strategy to initialize solution
- evaluator: {[function]} -- list of basic function in order to obtained fitness (multiple objectives)
- operators: {[Operator]} -- list of operator to use when launching algorithm
- policy: {Policy} -- Policy class implementation strategy to select operators
- validator: {function} -- basic function to check if solution is valid or not under some constraints
- maximise: {bool} -- specify kind of optimisation problem
- verbose: {bool} -- verbose or not information about the algorithm
- population: [{Solution}] -- population of solution, one for each sub problem
- pfPop: [{Solution}] -- pareto front population
- weights: [[{float}]] -- random weights used for custom mu sub problems
- callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
- >>> import random
- >>> # operators import
- >>> from macop.operators.discrete.crossovers import SimpleCrossover
- >>> from macop.operators.discrete.mutators import SimpleMutation
- >>> # policy import
- >>> from macop.policies.classicals import RandomPolicy
- >>> # solution and algorithm
- >>> from macop.solutions.discrete import BinarySolution
- >>> from macop.algorithms.multi import MOEAD
- >>> # evaluator import
- >>> from macop.evaluators.discrete.mono import KnapsackEvaluator
- >>> # evaluator initialization (worths objects passed into data)
- >>> problem_size = 20
- >>> worths1 = [ random.randint(0, 20) for i in range(problem_size) ]
- >>> evaluator1 = KnapsackEvaluator(data={'worths': worths1})
- >>> worths2 = [ random.randint(10, 15) for i in range(problem_size) ]
- >>> evaluator2 = KnapsackEvaluator(data={'worths': worths2})
- >>> # validator specification (based on weights of each objects)
- >>> weights = [ random.randint(5, 30) for i in range(problem_size) ]
- >>> validator = lambda solution: True if sum([weights[i] for i, value in enumerate(solution._data) if value == 1]) < 200 else False
- >>> # initializer function with lambda function
- >>> initializer = lambda x=20: BinarySolution.random(x, validator)
- >>> # operators list with crossover and mutation
- >>> operators = [SimpleCrossover(), SimpleMutation()]
- >>> policy = RandomPolicy(operators)
- >>> # MOEAD use multi-objective, hence list of evaluators with mu=100 and T=10
- >>> algo = MOEAD(20, 5, initializer, [evaluator1, evaluator2], operators, policy, validator, maximise=True, verbose=False)
- >>> # run the algorithm and get the pareto front obtained
- >>> pf_solutions = algo.run(100)
- >>> # check size of expected pareto
- >>> len(pf_solutions)
- 33
- """
- def __init__(self,
- mu,
- T,
- initializer,
- evaluator,
- operators,
- policy,
- validator,
- maximise=True,
- parent=None,
- verbose=True):
- # redefinition of constructor to well use `initRun` method
- self._initializer = initializer
- self._evaluator = evaluator
- self._operators = operators
- self._policy = policy
- self._validator = validator
- self._callbacks = []
- # by default
- self._numberOfEvaluations = 0
- self._maxEvaluations = 0
- self._nObjectives = len(evaluator)
- # other parameters
- self._parent = parent # parent algorithm if it's sub algorithm
- #self.maxEvaluations = 0 # by default
- self._maximise = maximise
- self._verbose = verbose
- # track reference of algo into operator (keep an eye into best solution)
- for operator in self._operators:
- operator.setAlgo(self)
- # by default track reference for policy
- self._policy.setAlgo(self)
- if mu < T:
- raise ValueError('`mu` cannot be less than `T`')
-
- if mu < T:
- raise ValueError('`mu` cannot be less than `T`')
- self._mu = mu
- self._T = T
- # initialize neighbors for each sub problem
- self.setNeighbors()
- weights = []
- if self._nObjectives == 2:
- for i in range(self._mu):
- angle = math.pi / 2 * i / (self._mu - 1)
- weights.append([math.cos(angle), math.sin(angle)])
- elif self._nObjectives >= 3:
- # random weights using uniform
- for i in range(self._mu):
- w_i = np.random.uniform(0, 1, self._nObjectives)
- weights.append(w_i / sum(w_i))
- else:
- raise ValueError('Unvalid number of objectives')
- self._weights = weights
- self._subProblems = []
- for i in range(self._mu):
- # compute weight sum from solution
- sub_evaluator = WeightedSum(data={'evaluators': evaluator, 'weights': weights[i]})
- # intialize each sub problem
- # use copy of list to keep track for each sub problem
- subProblem = MOSubProblem(i, weights[i],
- initializer, sub_evaluator,
- operators.copy(), policy, validator,
- maximise, self, verbose=self._verbose)
- self._subProblems.append(subProblem)
- self._population = [None for n in range(self._mu)]
- self._pfPop = []
- # ref point based on number of evaluators
- if self._maximise:
- self._refPoint = [0 for _ in range(self._nObjectives)]
- else:
- self._refPoint = [
- sys.float_info.max for _ in range(self._nObjectives)
- ]
- def initRun(self):
- """
- Method which initialiazes or re-initializes the whole algorithm context specifically for MOEAD
- """
- # initialization is done during run method
- pass
- def run(self, evaluations):
- """
- Run the local search algorithm
- Args:
- evaluations: {int} -- number of Local search evaluations
-
- Returns:
- {Solution} -- best solution found
- """
- # by default use of mother method to initialize variables
- super().run(evaluations)
- # enable callback resume for MOEAD
- self.resume()
- # initialize each sub problem if no backup
- for i in range(self._mu):
- if self._subProblems[i]._bestSolution is None:
- self._subProblems[i].run(1)
- self._population[i] = self._subProblems[i]._bestSolution
- # if no backup for pf population
- if len(self._pfPop) == 0:
- for i in range(self._mu):
- self._pfPop.append(self._subProblems[i]._bestSolution)
- # MOEAD algorithm implementation
- while not self.stop():
- for i in range(self._mu):
- # run 1 iteration into sub problem `i`
- self._subProblems[i].run(1)
- spBestSolution = self._subProblems[i]._bestSolution
- self.updateRefPoint(spBestSolution)
- # for each neighbor of current sub problem update solution if better
- improvment = False
- for j in self._neighbors[i]:
- if spBestSolution.fitness() > self._subProblems[j]._bestSolution.fitness():
- # create new solution based on current new if better, computes fitness associated to new solution for sub problem
- newSolution = spBestSolution.clone()
- # evaluate solution for new sub problem and update as best solution
- self._subProblems[j].evaluate(newSolution)
- self._subProblems[j]._bestSolution = newSolution
- # update population solution for this sub problem
- self._population[j] = newSolution
- improvment = True
- # add new solution if improvment is idenfity
- if improvment:
- self._pfPop.append(spBestSolution)
- # update pareto front
- self._pfPop = self.paretoFront(self._pfPop)
- # add progress here
- self.progress()
- # stop algorithm if necessary
- if self.stop():
- break
- logging.info(f"End of {type(self).__name__}, best solution found {self._population}")
- self.end()
- return self._pfPop
- def progress(self):
- """
- Log progress and apply callbacks if necessary
- """
- if len(self._callbacks) > 0:
- for callback in self._callbacks:
- callback.run()
- macop_progress(self, self.getGlobalEvaluation(), self.getGlobalMaxEvaluation())
- logging.info(f"-- {type(self).__name__} evaluation {self._numberOfEvaluations} of {self._maxEvaluations} ({((self._numberOfEvaluations) / self._maxEvaluations * 100.):.2f}%)")
- def setNeighbors(self):
- if self._T % 2 == 1:
- dmin = -int(self._T / 2)
- dmax = int(self._T / 2) + 1
- else:
- dmin = -int(self._T / 2) + 1
- dmax = int(+self._T / 2)
- # init neighbord list
- self._neighbors = [[] for n in range(self._mu)]
- for direction in range(0, -dmin):
- for i in range(self._T):
- self._neighbors[direction].append(i)
- for direction in range(-dmin, self._mu - dmax):
- for i in range(direction + dmin, direction + dmax - 1):
- self._neighbors[direction].append(i)
- for direction in range(self._mu - dmax, self._mu):
- for i in range(self._mu - self._T, self._mu):
- self._neighbors[direction].append(i)
- def updateRefPoint(self, solution):
- if self._maximise:
- for i in range(len(self._evaluator)):
- if solution._scores[i] > self._refPoint[i]:
- self._refPoint[i] = solution._scores[i]
- else:
- for i in range(len(self._evaluator)):
- if solution.scores[i] < self._refPoint[i]:
- self._refPoint[i] = solution._scores[i]
- def paretoFront(self, population):
- paFront = []
- indexes = []
- nObjectives = len(self._evaluator)
- nSolutions = len(population)
- # find dominated solution
- for i in range(nSolutions):
- for j in range(nSolutions):
- if j in indexes:
- continue
- # check if solutions are the same
- if all([
- population[i]._data[k] == population[j]._data[k]
- for k in range(len(population[i]._data))
- ]):
- continue
- nDominated = 0
- # check number of dominated objectives of current solution by the others solution
- for k in range(len(self._evaluator)):
- if self._maximise:
- if population[i]._scores[k] < population[j]._scores[k]:
- nDominated += 1
- else:
- if population[i]._scores[k] > population[j]._scores[k]:
- nDominated += 1
- if nDominated == nObjectives:
- indexes.append(i)
- break
- # store the non dominated solution into pareto front
- for i in range(nSolutions):
- if i not in indexes:
- paFront.append(population[i])
- return paFront
- def end(self):
- """Display end message into `run` method
- """
- macop_text(self, f'({type(self).__name__}) Found after {self._numberOfEvaluations} evaluations')
- for i, solution in enumerate(self._pfPop):
- macop_text(self, f' - [{i}] {solution._scores} : {solution}')
- macop_line(self)
- def information(self):
- logging.info("-- Pareto front :")
- for i, solution in enumerate(self._pfPop):
- logging.info(f"-- {i}] SCORE {solution._scores} - {solution}")
- def __str__(self):
- return f"{type(self).__name__} using {type(self._population).__name__}"
- class MOSubProblem(Algorithm):
- """Specific MO sub problem used into MOEAD
- Attributes:
- index: {int} -- sub problem index
- weights: {[float]} -- sub problems objectives weights
- initalizer: {function} -- basic function strategy to initialize solution
- evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)
- operators: {[Operator]} -- list of operator to use when launching algorithm
- policy: {Policy} -- Policy class implementation strategy to select operators
- validator: {function} -- basic function to check if solution is valid or not under some constraints
- maximise: {bool} -- specify kind of optimisation problem
- verbose: {bool} -- verbose or not information about the algorithm
- currentSolution: {Solution} -- current solution managed for current evaluation
- bestSolution: {Solution} -- best solution found so far during running algorithm
- callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
-
- Example:
- >>> import random
- >>> # operators import
- >>> from macop.operators.discrete.crossovers import SimpleCrossover
- >>> from macop.operators.discrete.mutators import SimpleMutation
- >>> # policy import
- >>> from macop.policies.classicals import RandomPolicy
- >>> # solution and algorithm
- >>> from macop.solutions.discrete import BinarySolution
- >>> from macop.algorithms.multi import MOEAD, MOSubProblem
- >>> # evaluator import
- >>> from macop.evaluators.discrete.mono import KnapsackEvaluator
- >>> # evaluator initialization (worths objects passed into data)
- >>> problem_size = 20
- >>> worths1 = [ random.randint(0, 20) for i in range(problem_size) ]
- >>> evaluator1 = KnapsackEvaluator(data={'worths': worths1})
- >>> worths2 = [ random.randint(10, 15) for i in range(problem_size) ]
- >>> evaluator2 = KnapsackEvaluator(data={'worths': worths2})
- >>> # validator specification (based on weights of each objects)
- >>> weights = [ random.randint(5, 30) for i in range(problem_size) ]
- >>> validator = lambda solution: True if sum([weights[i] for i, value in enumerate(solution._data) if value == 1]) < 200 else False
- >>> # initializer function with lambda function
- >>> initializer = lambda x=20: BinarySolution.random(x, validator)
- >>> # operators list with crossover and mutation
- >>> operators = [SimpleCrossover(), SimpleMutation()]
- >>> policy = RandomPolicy(operators)
- >>> algo = MOEAD(20, 5, initializer, [evaluator1, evaluator2], operators, policy, validator, maximise=True, verbose=False)
- >>> # weights of the sub problem
- >>> sub_problem_weights = [0.4, 0.6]
- >>> sub_evaluator = WeightedSum(data={'evaluators': [evaluator1, evaluator2], 'weights': sub_problem_weights})
- >>> # first parameter is the index of the MOSubProblem
- >>> subProblem = MOSubProblem(0, sub_problem_weights, initializer, sub_evaluator, operators, policy, validator, maximise=True, parent=algo, verbose=False)
- >>> # run the algorithm
- >>> solution = subProblem.run(100)
- >>> solution._score
- 133.0
- """
- def __init__(self,
- index,
- weights,
- initalizer,
- evaluator,
- operators,
- policy,
- validator,
- maximise=True,
- parent=None,
- verbose=True):
- super().__init__(initalizer, evaluator, operators, policy,
- validator, maximise, parent)
- self._index = index
- self._weights = weights
- self._verbose = verbose
- def run(self, evaluations):
- """
- Run the local search algorithm
- Args:
- evaluations: {int} -- number of evaluations
-
- Returns:
- {Solution} -- best solution found
- """
- # by default use of mother method to initialize variables
- super().run(evaluations)
- # initialize solution if necessary
- if self._bestSolution is None:
- self.initRun()
- # new operators list keep track of current sub problem
- for op in self._operators:
- op.setAlgo(self)
- for _ in range(evaluations):
- # keep reference of sub problem used
- self._policy.setAlgo(self)
- # update solution using policy
- newSolution = self.update(self._bestSolution)
- # if better solution than currently, replace it
- if self.isBetter(newSolution):
- self._bestSolution = newSolution
- # increase number of evaluations
- self.increaseEvaluation()
- self.progress()
- # stop algorithm if necessary
- if self.stop():
- break
- logging.info(f"---- Current {newSolution} - SCORE {newSolution.fitness()}")
- logging.info(f"End of {type(self).__name__}, best solution found {self._bestSolution}")
- return self._bestSolution
|