12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- """Classical Checkpoints classes implementations
- """
- # main imports
- import os
- import logging
- import numpy as np
- # module imports
- from macop.callbacks.base import Callback
- from macop.utils.progress import macop_text, macop_line
- class BasicCheckpoint(Callback):
- """
- BasicCheckpoint is used for loading previous computations and start again after loading checkpoint
- Attributes:
- algo: {Algorithm} -- main algorithm instance reference
- every: {int} -- checkpoint frequency used (based on number of evaluations)
- filepath: {str} -- file path where checkpoints will be saved
- """
- def run(self):
- """
- Check if necessary to do backup based on `every` variable
- """
- # get current best solution
- solution = self._algo._bestSolution
- currentEvaluation = self._algo.getGlobalEvaluation()
- # backup if necessary
- if currentEvaluation % self._every == 0:
- logging.info("Checkpoint is done into " + self._filepath)
- solutionData = ""
- solutionSize = len(solution._data)
- for index, val in enumerate(solution._data):
- solutionData += str(val)
- if index < solutionSize - 1:
- solutionData += ' '
- line = str(currentEvaluation) + ';' + solutionData + ';' + str(
- solution.fitness()) + ';\n'
- # check if file exists
- if not os.path.exists(self._filepath):
- with open(self._filepath, 'w') as f:
- f.write(line)
- else:
- with open(self._filepath, 'a') as f:
- f.write(line)
- def load(self):
- """
- Load last backup line of solution and set algorithm state (best solution and evaluations) at this backup
- """
- if os.path.exists(self._filepath):
- logging.info('Load best solution from last checkpoint')
- with open(self._filepath) as f:
- # get last line and read data
- lastline = f.readlines()[-1]
- data = lastline.split(';')
- # get evaluation information
- globalEvaluation = int(data[0])
- if self._algo.getParent() is not None:
- self._algo.getParent()._numberOfEvaluations = globalEvaluation
- else:
- self._algo._numberOfEvaluations = globalEvaluation
- # get best solution data information
- solutionData = list(map(int, data[1].split(' ')))
- if self._algo._bestSolution is None:
- self._algo._bestSolution = self._algo._initializer()
- self._algo._bestSolution._data = np.array(solutionData)
- self._algo._bestSolution._score = float(data[2])
-
- macop_line(self._algo)
- macop_text(self._algo, f'Checkpoint found from `{self._filepath}` file.')
- macop_text(self._algo, f'Restart algorithm from evaluation {self._algo._numberOfEvaluations}.')
- else:
- macop_text(self._algo, 'No backup found... Start running algorithm from evaluation 0.')
- logging.info("Can't load backup... Backup filepath not valid in Checkpoint")
- macop_line(self._algo)
|