123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231 |
- """Discrete solution classes implementations
- """
- import numpy as np
- # modules imports
- from macop.solutions.base import Solution
- class BinarySolution(Solution):
- """
- Binary integer solution class
- - store solution as a binary array (example: [0, 1, 0, 1, 1])
- - associated size is the size of the array
- - mainly use for selecting or not an element in a list of valuable objects
- Attributes:
- data: {ndarray} -- array of binary values
- size: {int} -- size of binary array values
- score: {float} -- fitness score value
- """
- def __init__(self, data, size):
- """
- initialise binary solution using specific data
- Args:
- data: {ndarray} -- array of binary values
- size: {int} -- size of binary array values
- Example:
- >>> from macop.solutions.discrete import BinarySolution
- >>>
- >>> # build of a solution using specific data and size
- >>> data = [0, 1, 0, 1, 1]
- >>> solution = BinarySolution(data, len(data))
- >>>
- >>> # check data content
- >>> sum(solution.data) == 3
- True
- >>> # clone solution
- >>> solution_copy = solution.clone()
- >>> all(solution_copy.data == solution.data)
- True
- """
- super().__init__(np.array(data), size)
- @staticmethod
- def random(size, validator=None):
- """
- Intialize binary array with use of validator to generate valid random solution
- Args:
- size: {int} -- expected solution size to generate
- validator: {function} -- specific function which validates or not a solution (if None, not validation is applied)
- Returns:
- {:class:`~macop.solutions.discrete.BinarySolution`}: new generated binary solution
- Example:
- >>> from macop.solutions.discrete import BinarySolution
- >>>
- >>> # generate random solution using specific validator
- >>> validator = lambda solution: True if sum(solution.data) > 5 else False
- >>> solution = BinarySolution.random(10, validator)
- >>> sum(solution.data) > 5
- True
- """
- data = np.random.randint(2, size=size)
- solution = BinarySolution(data, size)
- if not validator:
- return solution
- while not validator(solution):
- data = np.random.randint(2, size=size)
- solution = BinarySolution(data, size)
- return solution
- def __str__(self):
- return f"Binary solution {self._data}"
- class CombinatoryIntegerSolution(Solution):
- """
- Combinatory integer solution class
- - store solution as a combinatory array (example: [1, 3, 0, 2])
- - associated size is the size of the array
- - mainly use for selecting or not an element in a list of valuable objects
- Attributes:
- data: {ndarray} -- array of integer values
- size: {int} -- size of integer array values
- score: {float} -- fitness score value
- """
- def __init__(self, data, size):
- """
- initialise integer solution using specific data
- Args:
- data: {ndarray} -- array of integer values
- size: {int} -- size of integer array values
- >>> from macop.solutions.discrete import CombinatoryIntegerSolution
- >>> import numpy as np
- >>> data = np.arange(5)
- >>> solution = CombinatoryIntegerSolution(data, 5)
- >>> sum(solution.data) == 10
- True
- >>> solution_copy = solution.clone()
- >>> all(solution_copy.data == solution.data)
- True
- """
- super().__init__(data, size)
- @staticmethod
- def random(size, validator=None):
- """
- Intialize combinatory integer array with use of validator to generate valid random solution
- Args:
- size: {int} -- expected solution size to generate
- validator: {function} -- specific function which validates or not a solution (if None, not validation is applied)
- Returns:
- {:class:`~macop.solutions.discrete.CombinatoryIntegerSolution`}: new generated combinatory integer solution
- Example:
- >>> from macop.solutions.discrete import CombinatoryIntegerSolution
- >>>
- >>> # generate random solution using specific validator
- >>> validator = lambda solution: True if sum(solution.data) > 5 else False
- >>> solution = CombinatoryIntegerSolution.random(5, validator)
- >>> sum(solution.data) > 5
- True
- """
- data = np.arange(size)
- np.random.shuffle(data)
- solution = CombinatoryIntegerSolution(data, size)
- if not validator:
- return solution
- while not validator(solution):
- data = np.arange(size)
- np.random.shuffle(data)
- solution = CombinatoryIntegerSolution(data, size)
- return solution
- def __str__(self):
- return f"Combinatory integer solution {self._data}"
- class IntegerSolution(Solution):
- """
- Integer solution class
- Attributes:
- data: {ndarray} -- array of binary values
- size: {int} -- size of binary array values
- score: {float} -- fitness score value
- """
- def __init__(self, data, size):
- """
- initialise integer solution using specific data
- Args:
- data: {ndarray} -- array of binary values
- size: {int} -- size of binary array values
- Example:
- >>> from macop.solutions.discrete import IntegerSolution
- >>> import numpy as np
- >>> np.random.seed(42)
- >>> data = np.random.randint(5, size=10)
- >>> solution = IntegerSolution(data, 10)
- >>> sum(solution.data)
- 28
- >>> solution_copy = solution.clone()
- >>> all(solution_copy.data == solution.data)
- True
- """
- super().__init__(data, size)
- @staticmethod
- def random(size, validator=None):
- """
- Intialize integer array with use of validator to generate valid random solution
- Args:
- size: {int} -- expected solution size to generate
- validator: {function} -- specific function which validates or not a solution (if None, not validation is applied)
- Returns:
- {:class:`~macop.solutions.discrete.IntegerSolution`}: new generated integer solution
- Example:
- >>> from macop.solutions.discrete import IntegerSolution
- >>> import numpy as np
- >>> np.random.seed(42)
- >>>
- >>> # generate random solution using specific validator
- >>> validator = lambda solution: True if sum(solution.data) > 5 else False
- >>> solution = IntegerSolution.random(5, validator)
- >>> sum(solution.data) > 10
- True
- """
- data = np.random.randint(size, size=size)
- solution = IntegerSolution(data, size)
- if not validator:
- return solution
- while not validator(solution):
- data = np.random.randint(size, size=size)
- solution = IntegerSolution(data, size)
- return solution
- def __str__(self):
- return f"Integer solution {self._data}"
|