123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- import logging
- # Generic algorithm class
- class Algorithm():
- def __init__(self, _initalizer, _evaluator, _updators, _policy, _validator, _maximise=True):
- """
- Initialize all usefull parameters for problem to solve
- """
- self.initializer = _initalizer
- self.evaluator = _evaluator
- self.updators = _updators
- self.validator = _validator
- self.policy = _policy
- self.currentSolution = self.initializer()
-
- # evaluate current solution
- self.currentSolution.evaluate(self.evaluator)
- # keep in memory best known solution (current solution)
- self.bestSolution = self.currentSolution
- # other parameters
- self.maxEvalutations = 0 # by default
- self.numberOfEvaluations = 0
- self.maximise = _maximise
- def reinit(self):
- """
- Reinit the whole variable
- """
- self.currentSolution = self.initializer
- self.bestSolution = self.currentSolution
- self.numberOfEvaluations = 0
- def evaluate(self, solution):
- """
- Returns:
- fitness score of solution which is not already evaluated or changed
- Note:
- if multi-objective problem this method can be updated using array of `evaluator`
- """
- return solution.evaluate(self.evaluator)
- def update(self, solution):
- """
- Apply update function to solution using specific `policy`
- Check if solution is valid after modification and returns it
- Returns:
- updated solution
- """
- sol = self.policy.apply(solution)
- if(sol.isValid(self.validator)):
- return sol
- else:
- print("New solution is not valid", sol)
- return solution
- def isBetter(self, solution):
- """
- Check if solution is better than best found
- Returns:
- `True` if better
- """
- # depending of problem to solve (maximizing or minimizing)
- if self.maximise:
- if self.evaluate(solution) > self.bestSolution.fitness():
- return True
- else:
- if self.evaluate(solution) < self.bestSolution.fitness():
- return True
- # by default
- return False
- def run(self, _evaluations):
- """
- Run the specific algorithm following number of evaluations to find optima
- """
- self.maxEvalutations = _evaluations
- logging.info("Run %s with %s evaluations" % (self.__str__(), _evaluations))
- def progress(self):
- logging.info("-- Evaluation n°%s/%s, %s%%" % (self.numberOfEvaluations, self.maxEvalutations, "{0:.2f}".format((self.numberOfEvaluations) / self.maxEvalutations * 100.)))
- def information(self):
- logging.info("-- Found %s with score of %s" % (self.bestSolution, self.bestSolution.fitness()))
- def __str__(self):
- return "%s using %s" % (type(self).__name__, type(self.bestSolution).__name__)
|