123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- """Multi-objective Checkpoints classes implementations
- """
- # main imports
- import os
- import logging
- import numpy as np
- # module imports
- from macop.callbacks.base import Callback
- from macop.utils.progress import macop_text, macop_line
- class MultiCheckpoint(Callback):
- """
- MultiCheckpoint is used for loading previous computations and start again after loading checkpoint
- Attributes:
- algo: {Algorithm} -- main algorithm instance reference
- every: {int} -- checkpoint frequency used (based on number of evaluations)
- filepath: {str} -- file path where checkpoints will be saved
- """
- def run(self):
- """
- Check if necessary to do backup based on `every` variable
- """
- # get current population
- population = self._algo._population
- currentEvaluation = self._algo.getGlobalEvaluation()
- # backup if necessary
- if currentEvaluation % self._every == 0:
- logging.info("Checkpoint is done into " + self._filepath)
- with open(self._filepath, 'w') as f:
- for solution in population:
- solutionData = ""
- solutionSize = len(solution._data)
- for index, val in enumerate(solution._data):
- solutionData += str(val)
- if index < solutionSize - 1:
- solutionData += ' '
- line = str(currentEvaluation) + ';'
- for i in range(len(self._algo._evaluator)):
- line += str(solution._scores[i]) + ';'
- line += solutionData + ';\n'
- f.write(line)
- def load(self):
- """
- Load backup lines as population and set algorithm state (population and pareto front) at this backup
- """
- if os.path.exists(self._filepath):
- logging.info('Load best solution from last checkpoint')
- with open(self._filepath) as f:
- # read data for each line
- for i, line in enumerate(f.readlines()):
- data = line.replace(';\n', '').split(';')
- # only the first time
- if i == 0:
- # get evaluation information
- globalEvaluation = int(data[0])
- if self._algo.getParent() is not None:
- self._algo.getParen(
- )._numberOfEvaluations = globalEvaluation
- else:
- self._algo._numberOfEvaluations = globalEvaluation
- nObjectives = len(self._algo._evaluator)
- scores = [float(s) for s in data[1:nObjectives + 1]]
- # get best solution data information
- solutionData = list(map(int, data[-1].split(' ')))
- # initialize and fill with data
- self._algo._population[i] = self._algo._initializer()
- self._algo._population[i]._data = np.array(solutionData)
- self._algo._population[i]._scores = scores
- self._algo._pfPop.append(self._algo._population[i])
- macop_line(self._algo)
- macop_text(
- self._algo,
- f'Load of available population from `{self._filepath}`')
- macop_text(
- self._algo,
- f'Restart algorithm from evaluation {self._algo._numberOfEvaluations}.'
- )
- else:
- macop_text(
- self._algo,
- 'No backup found... Start running algorithm from evaluation 0.'
- )
- logging.info(
- "Can't load backup... Backup filepath not valid in Checkpoint")
- macop_line(self._algo)
- class ParetoCheckpoint(Callback):
- """
- Pareto checkpoint is used for loading previous computations and start again after loading checkpoint
- Attributes:
- algo: {Algorithm} -- main algorithm instance reference
- every: {int} -- checkpoint frequency used (based on number of evaluations)
- filepath: {str} -- file path where checkpoints will be saved
- """
- def run(self):
- """
- Check if necessary to do backup based on `every` variable
- """
- # get current population
- pfPop = self._algo._pfPop
- currentEvaluation = self._algo.getGlobalEvaluation()
- # backup if necessary
- if currentEvaluation % self._every == 0:
- logging.info("Checkpoint is done into " + self._filepath)
- with open(self._filepath, 'w') as f:
- for solution in pfPop:
- solutionData = ""
- solutionSize = len(solution._data)
- for index, val in enumerate(solution._data):
- solutionData += str(val)
- if index < solutionSize - 1:
- solutionData += ' '
- line = ''
- for i in range(len(self._algo._evaluator)):
- line += str(solution._scores[i]) + ';'
- line += solutionData + ';\n'
- f.write(line)
- def load(self):
- """
- Load backup lines as population and set algorithm state (population and pareto front) at this backup
- """
- if os.path.exists(self._filepath):
- logging.info('Load best solution from last checkpoint')
- with open(self._filepath) as f:
- # read data for each line
- for i, line in enumerate(f.readlines()):
- data = line.replace(';\n', '').split(';')
- nObjectives = len(self._algo._evaluator)
- scores = [float(s) for s in data[0:nObjectives]]
- # get best solution data information
- solutionData = list(map(int, data[-1].split(' ')))
- self._algo._pfPop[i]._data = solutionData
- self._algo._pfPop[i]._scores = scores
- macop_text(
- self._algo,
- f'Load of available pareto front backup from `{ self._filepath}`'
- )
- else:
- macop_text(
- self._algo,
- 'No pareto front found... Start running algorithm with new pareto front population.'
- )
- logging.info("No pareto front backup used...")
- macop_line(self._algo)
|