1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- """Multi-objective evaluators classes
- """
- # main imports
- from macop.evaluators.base import Evaluator
- class WeightedSum(Evaluator):
- """Weighted-sum sub-evaluator class which enables to compute solution using specific `_data`
- - stores into its `_data` dictionary attritute required measures when computing a solution
- - `_data['evaluators']` current evaluator to use
- - `_data['weights']` Associated weight to use
- - `compute` method enables to compute and associate a tuples of scores to a given solution
-
- >>> import random
- >>> # binary solution import
- >>> from macop.solutions.discrete import BinarySolution
- >>> # evaluators imports
- >>> from macop.evaluators.discrete.mono import KnapsackEvaluator
- >>> from macop.evaluators.discrete.multi import WeightedSum
- >>> solution_data = [1, 0, 0, 1, 1, 0, 1, 0]
- >>> size = len(solution_data)
- >>> solution = BinarySolution(solution_data, size)
- >>> # evaluator 1 initialization (worths objects passed into data)
- >>> worths1 = [ random.randint(5, 20) for i in range(size) ]
- >>> evaluator1 = KnapsackEvaluator(data={'worths': worths1})
- >>> # evaluator 2 initialization (worths objects passed into data)
- >>> worths2 = [ random.randint(10, 15) for i in range(size) ]
- >>> evaluator2 = KnapsackEvaluator(data={'worths': worths2})
- >>> weighted_evaluator = WeightedSum(data={'evaluators': [evaluator1, evaluator2], 'weights': [0.3, 0.7]})
- >>> weighted_score = weighted_evaluator.compute(solution)
- >>> expected_score = evaluator1.compute(solution) * 0.3 + evaluator2.compute(solution) * 0.7
- >>> weighted_score == expected_score
- True
- >>> weighted_score
- 50.8
- """
- def compute(self, solution):
- """Apply the computation of fitness from solution
- - Associate tuple of fitness scores for each objective to the current solution
- - Compute weighted-sum for these objectives
- Args:
- solution: {Solution} -- Solution instance
-
- Returns:
- {float} -- weighted-sum of the fitness scores
- """
- scores = [
- evaluator.compute(solution)
- for evaluator in self._data['evaluators']
- ]
- # associate objectives scores to solution
- solution._scores = scores
- return sum(
- [scores[i] * w for i, w in enumerate(self._data['weights'])])
|