Optimisation modules built for optimization problem during thesis

Jérôme BUISINE a141f7fc2f Merge branch 'release/v0.1.4' 4 лет назад
.github df8251b5ac new package name : macop; use of new policy for operators 4 лет назад
.vscode 4fbbbf39d3 documentation updates for algorithms 4 лет назад
docs 05ed7a18c3 update of macop documentation 4 лет назад
macop 05ed7a18c3 update of macop documentation 4 лет назад
.gitignore 4fbbbf39d3 documentation updates for algorithms 4 лет назад
CONTRIBUTING.md df8251b5ac new package name : macop; use of new policy for operators 4 лет назад
LICENSE 3589fb944b Initial commit 5 лет назад
README.md 05ed7a18c3 update of macop documentation 4 лет назад
__init__.py 0a1b108095 First version of OR framework 5 лет назад
build.sh df8251b5ac new package name : macop; use of new policy for operators 4 лет назад
checkpoints.csv df8251b5ac new package name : macop; use of new policy for operators 4 лет назад
logo_macop.png df8251b5ac new package name : macop; use of new policy for operators 4 лет назад
mainExample.py 05ed7a18c3 update of macop documentation 4 лет назад
requirements.txt 4fbbbf39d3 documentation updates for algorithms 4 лет назад
setup.py 05ed7a18c3 update of macop documentation 4 лет назад

README.md

Minimalist And Customizable Optimization Package

Description

macop is an optimization Python package which not implement the whole available algorithms in the literature but let you the possibility to quickly develop and test your own algorithm and strategies. The main objective of this package is to be the most flexible as possible and hence, to offer a maximum of implementation possibilities.

Modules

  • algorithms: generic and implemented OR algorithms
  • evaluator: example of an evaluation function to use (you have to implement your own evaluation function)
  • solutions: solutions used to represent problem data
  • operators: mutators, crossovers update of solution. This folder also has policies folder to manage the way of update and use solution.
  • checkpoints: checkpoints folder where Checkpoint class is available for making checkpoint every number of evaluations.

Note: you can pass a custom validator function to the algorithm in order to check is solution is always correct for your needs after an update.

How to use ?

You can see an example of use in the mainExample.py python file.

Fully documentation of package with examples is also available.

Add as dependency

git submodule add https://github.com/jbuisine/macop.git

License

The MIT License