123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510 |
- <!DOCTYPE html>
- <!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
- <!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
- <head>
- <meta charset="utf-8">
-
- <meta name="viewport" content="width=device-width, initial-scale=1.0">
-
- <title>macop.algorithms.mono — macop v1.0.5 documentation</title>
-
-
-
-
-
-
- <script type="text/javascript" src="../../../_static/js/modernizr.min.js"></script>
-
-
- <script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
- <script type="text/javascript" src="../../../_static/jquery.js"></script>
- <script type="text/javascript" src="../../../_static/underscore.js"></script>
- <script type="text/javascript" src="../../../_static/doctools.js"></script>
- <script type="text/javascript" src="../../../_static/language_data.js"></script>
-
- <script type="text/javascript" src="../../../_static/js/theme.js"></script>
-
-
- <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
- <link rel="index" title="Index" href="../../../genindex.html" />
- <link rel="search" title="Search" href="../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
-
- <div class="wy-grid-for-nav">
-
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
-
-
- <a href="../../../index.html" class="icon icon-home"> macop
-
-
- </a>
-
-
-
- <div class="version">
- 1.0.5
- </div>
-
-
-
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
-
- </div>
- <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
-
-
-
-
-
-
- <p class="caption"><span class="caption-text">Contents:</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../description.html">Description</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../macop.html">Documentation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../examples.html">Some examples</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../contributing.html">Contributing</a></li>
- </ul>
-
-
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
-
- <nav class="wy-nav-top" aria-label="top navigation">
-
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../index.html">macop</a>
-
- </nav>
- <div class="wy-nav-content">
-
- <div class="rst-content">
-
-
- <div role="navigation" aria-label="breadcrumbs navigation">
- <ul class="wy-breadcrumbs">
-
- <li><a href="../../../index.html">Docs</a> »</li>
-
- <li><a href="../../index.html">Module code</a> »</li>
-
- <li>macop.algorithms.mono</li>
-
-
- <li class="wy-breadcrumbs-aside">
-
- </li>
-
- </ul>
-
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for macop.algorithms.mono</h1><div class="highlight"><pre>
- <span></span><span class="sd">"""Mono-objective available algorithms</span>
- <span class="sd">"""</span>
- <span class="c1"># main imports</span>
- <span class="kn">import</span> <span class="nn">logging</span>
- <span class="c1"># module imports</span>
- <span class="kn">from</span> <span class="nn">.base</span> <span class="kn">import</span> <span class="n">Algorithm</span>
- <div class="viewcode-block" id="HillClimberFirstImprovment"><a class="viewcode-back" href="../../../macop/macop.algorithms.mono.html#macop.algorithms.mono.HillClimberFirstImprovment">[docs]</a><span class="k">class</span> <span class="nc">HillClimberFirstImprovment</span><span class="p">(</span><span class="n">Algorithm</span><span class="p">):</span>
- <span class="sd">"""Hill Climber First Improvment used as quick exploration optimisation algorithm</span>
- <span class="sd"> - First, this algorithm do a neighborhood exploration of a new generated solution (by doing operation on the current solution obtained) in order to find a better solution from the neighborhood space.</span>
- <span class="sd"> - Then replace the current solution by the first one from the neighbordhood space which is better than the current solution.</span>
- <span class="sd"> - And do these steps until a number of evaluation (stopping criterion) is reached.</span>
- <span class="sd"> Attributes:</span>
- <span class="sd"> initalizer: {function} -- basic function strategy to initialize solution</span>
- <span class="sd"> evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)</span>
- <span class="sd"> operators: {[Operator]} -- list of operator to use when launching algorithm</span>
- <span class="sd"> policy: {Policy} -- Policy class implementation strategy to select operators</span>
- <span class="sd"> validator: {function} -- basic function to check if solution is valid or not under some constraints</span>
- <span class="sd"> maximise: {bool} -- specify kind of optimisation problem </span>
- <span class="sd"> currentSolution: {Solution} -- current solution managed for current evaluation</span>
- <span class="sd"> bestSolution: {Solution} -- best solution found so far during running algorithm</span>
- <span class="sd"> callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm</span>
- <span class="sd"> </span>
- <span class="sd"> Example:</span>
- <span class="sd"> >>> import random</span>
- <span class="sd"> >>> # operators import</span>
- <span class="sd"> >>> from macop.operators.discrete.crossovers import SimpleCrossover</span>
- <span class="sd"> >>> from macop.operators.discrete.mutators import SimpleMutation</span>
- <span class="sd"> >>> # policy import</span>
- <span class="sd"> >>> from macop.policies.classicals import RandomPolicy</span>
- <span class="sd"> >>> # solution and algorithm</span>
- <span class="sd"> >>> from macop.solutions.discrete import BinarySolution</span>
- <span class="sd"> >>> from macop.algorithms.mono import HillClimberFirstImprovment</span>
- <span class="sd"> >>> # evaluator import</span>
- <span class="sd"> >>> from macop.evaluators.discrete.mono import KnapsackEvaluator</span>
- <span class="sd"> >>> # evaluator initialization (worths objects passed into data)</span>
- <span class="sd"> >>> problem_size = 20</span>
- <span class="sd"> >>> worths = [ random.randint(0, 20) for i in range(problem_size) ]</span>
- <span class="sd"> >>> evaluator = KnapsackEvaluator(data={'worths': worths})</span>
- <span class="sd"> >>> # validator specification (based on weights of each objects)</span>
- <span class="sd"> >>> weights = [ random.randint(5, 30) for i in range(problem_size) ]</span>
- <span class="sd"> >>> validator = lambda solution: True if sum([weights[i] for i, value in enumerate(solution._data) if value == 1]) < 200 else False</span>
- <span class="sd"> >>> # initializer function with lambda function</span>
- <span class="sd"> >>> initializer = lambda x=20: BinarySolution.random(x, validator)</span>
- <span class="sd"> >>> # operators list with crossover and mutation</span>
- <span class="sd"> >>> operators = [SimpleCrossover(), SimpleMutation()]</span>
- <span class="sd"> >>> policy = RandomPolicy(operators)</span>
- <span class="sd"> >>> algo = HillClimberFirstImprovment(initializer, evaluator, operators, policy, validator, maximise=True, verbose=False)</span>
- <span class="sd"> >>> # run the algorithm</span>
- <span class="sd"> >>> solution = algo.run(100)</span>
- <span class="sd"> >>> solution._score</span>
- <span class="sd"> 128</span>
- <span class="sd"> """</span>
- <div class="viewcode-block" id="HillClimberFirstImprovment.run"><a class="viewcode-back" href="../../../macop/macop.algorithms.mono.html#macop.algorithms.mono.HillClimberFirstImprovment.run">[docs]</a> <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">evaluations</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Run the local search algorithm</span>
- <span class="sd"> Args:</span>
- <span class="sd"> evaluations: {int} -- number of Local search evaluations</span>
- <span class="sd"> </span>
- <span class="sd"> Returns:</span>
- <span class="sd"> {Solution} -- best solution found</span>
- <span class="sd"> """</span>
- <span class="c1"># by default use of mother method to initialize variables</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">evaluations</span><span class="p">)</span>
- <span class="c1"># initialize current solution and best solution</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">initRun</span><span class="p">()</span>
- <span class="n">solutionSize</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_currentSolution</span><span class="o">.</span><span class="n">_size</span>
- <span class="c1"># local search algorithm implementation</span>
- <span class="k">while</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">():</span>
- <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">solutionSize</span><span class="p">):</span>
- <span class="c1"># update current solution using policy</span>
- <span class="n">newSolution</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_currentSolution</span><span class="p">)</span>
- <span class="c1"># if better solution than currently, replace it and stop current exploration (first improvment)</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">isBetter</span><span class="p">(</span><span class="n">newSolution</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span> <span class="o">=</span> <span class="n">newSolution</span>
- <span class="k">break</span>
- <span class="c1"># increase number of evaluations</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">increaseEvaluation</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">progress</span><span class="p">()</span>
- <span class="n">logging</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="sa">f</span><span class="s2">"---- Current </span><span class="si">{</span><span class="n">newSolution</span><span class="si">}</span><span class="s2"> - SCORE </span><span class="si">{</span><span class="n">newSolution</span><span class="o">.</span><span class="n">fitness</span><span class="p">()</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
- <span class="c1"># stop algorithm if necessary</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">():</span>
- <span class="k">break</span>
- <span class="c1"># set new current solution using best solution found in this neighbor search</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_currentSolution</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span>
- <span class="n">logging</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="sa">f</span><span class="s2">"End of </span><span class="si">{</span><span class="nb">type</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, best solution found </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
-
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span></div></div>
- <div class="viewcode-block" id="HillClimberBestImprovment"><a class="viewcode-back" href="../../../macop/macop.algorithms.mono.html#macop.algorithms.mono.HillClimberBestImprovment">[docs]</a><span class="k">class</span> <span class="nc">HillClimberBestImprovment</span><span class="p">(</span><span class="n">Algorithm</span><span class="p">):</span>
- <span class="sd">"""Hill Climber Best Improvment used as exploitation optimisation algorithm</span>
- <span class="sd"> - First, this algorithm do a neighborhood exploration of a new generated solution (by doing operation on the current solution obtained) in order to find the best solution from the neighborhood space.</span>
- <span class="sd"> - Then replace the best solution found from the neighbordhood space as current solution to use.</span>
- <span class="sd"> - And do these steps until a number of evaluation (stopping criterion) is reached.</span>
- <span class="sd"> Attributes:</span>
- <span class="sd"> initalizer: {function} -- basic function strategy to initialize solution</span>
- <span class="sd"> evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)</span>
- <span class="sd"> operators: {[Operator]} -- list of operator to use when launching algorithm</span>
- <span class="sd"> policy: {Policy} -- Policy class implementation strategy to select operators</span>
- <span class="sd"> validator: {function} -- basic function to check if solution is valid or not under some constraints</span>
- <span class="sd"> maximise: {bool} -- specify kind of optimisation problem </span>
- <span class="sd"> currentSolution: {Solution} -- current solution managed for current evaluation</span>
- <span class="sd"> bestSolution: {Solution} -- best solution found so far during running algorithm</span>
- <span class="sd"> callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm</span>
- <span class="sd"> </span>
- <span class="sd"> Example:</span>
- <span class="sd"> >>> import random</span>
- <span class="sd"> >>> # operators import</span>
- <span class="sd"> >>> from macop.operators.discrete.crossovers import SimpleCrossover</span>
- <span class="sd"> >>> from macop.operators.discrete.mutators import SimpleMutation</span>
- <span class="sd"> >>> # policy import</span>
- <span class="sd"> >>> from macop.policies.classicals import RandomPolicy</span>
- <span class="sd"> >>> # solution and algorithm</span>
- <span class="sd"> >>> from macop.solutions.discrete import BinarySolution</span>
- <span class="sd"> >>> from macop.algorithms.mono import HillClimberBestImprovment</span>
- <span class="sd"> >>> # evaluator import</span>
- <span class="sd"> >>> from macop.evaluators.discrete.mono import KnapsackEvaluator</span>
- <span class="sd"> >>> # evaluator initialization (worths objects passed into data)</span>
- <span class="sd"> >>> problem_size = 20</span>
- <span class="sd"> >>> worths = [ random.randint(0, 20) for i in range(problem_size) ]</span>
- <span class="sd"> >>> evaluator = KnapsackEvaluator(data={'worths': worths})</span>
- <span class="sd"> >>> # validator specification (based on weights of each objects)</span>
- <span class="sd"> >>> weights = [ random.randint(5, 30) for i in range(problem_size) ]</span>
- <span class="sd"> >>> validator = lambda solution: True if sum([weights[i] for i, value in enumerate(solution._data) if value == 1]) < 200 else False</span>
- <span class="sd"> >>> # initializer function with lambda function</span>
- <span class="sd"> >>> initializer = lambda x=20: BinarySolution.random(x, validator)</span>
- <span class="sd"> >>> # operators list with crossover and mutation</span>
- <span class="sd"> >>> operators = [SimpleCrossover(), SimpleMutation()]</span>
- <span class="sd"> >>> policy = RandomPolicy(operators)</span>
- <span class="sd"> >>> algo = HillClimberBestImprovment(initializer, evaluator, operators, policy, validator, maximise=True, verbose=False)</span>
- <span class="sd"> >>> # run the algorithm</span>
- <span class="sd"> >>> solution = algo.run(100)</span>
- <span class="sd"> >>> solution._score</span>
- <span class="sd"> 104</span>
- <span class="sd"> """</span>
- <div class="viewcode-block" id="HillClimberBestImprovment.run"><a class="viewcode-back" href="../../../macop/macop.algorithms.mono.html#macop.algorithms.mono.HillClimberBestImprovment.run">[docs]</a> <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">evaluations</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Run the local search algorithm</span>
- <span class="sd"> Args:</span>
- <span class="sd"> evaluations: {int} -- number of Local search evaluations</span>
- <span class="sd"> </span>
- <span class="sd"> Returns:</span>
- <span class="sd"> {Solution} -- best solution found</span>
- <span class="sd"> """</span>
- <span class="c1"># by default use of mother method to initialize variables</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">evaluations</span><span class="p">)</span>
- <span class="c1"># initialize current solution and best solution</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">initRun</span><span class="p">()</span>
- <span class="n">solutionSize</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_currentSolution</span><span class="o">.</span><span class="n">_size</span>
- <span class="c1"># local search algorithm implementation</span>
- <span class="k">while</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">():</span>
- <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">solutionSize</span><span class="p">):</span>
- <span class="c1"># update current solution using policy</span>
- <span class="n">newSolution</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_currentSolution</span><span class="p">)</span>
- <span class="c1"># if better solution than currently, replace it</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">isBetter</span><span class="p">(</span><span class="n">newSolution</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span> <span class="o">=</span> <span class="n">newSolution</span>
- <span class="c1"># increase number of evaluations</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">increaseEvaluation</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">progress</span><span class="p">()</span>
- <span class="n">logging</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="sa">f</span><span class="s2">"---- Current </span><span class="si">{</span><span class="n">newSolution</span><span class="si">}</span><span class="s2"> - SCORE </span><span class="si">{</span><span class="n">newSolution</span><span class="o">.</span><span class="n">fitness</span><span class="p">()</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
- <span class="c1"># stop algorithm if necessary</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">():</span>
- <span class="k">break</span>
- <span class="c1"># set new current solution using best solution found in this neighbor search</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_currentSolution</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span>
- <span class="n">logging</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="sa">f</span><span class="s2">"End of </span><span class="si">{</span><span class="nb">type</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, best solution found </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
-
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span></div></div>
- <div class="viewcode-block" id="IteratedLocalSearch"><a class="viewcode-back" href="../../../macop/macop.algorithms.mono.html#macop.algorithms.mono.IteratedLocalSearch">[docs]</a><span class="k">class</span> <span class="nc">IteratedLocalSearch</span><span class="p">(</span><span class="n">Algorithm</span><span class="p">):</span>
- <span class="sd">"""Iterated Local Search used to avoid local optima and increave EvE (Exploration vs Exploitation) compromise</span>
- <span class="sd"> - A number of evaluations (`ls_evaluations`) is dedicated to local search process, here `HillClimberFirstImprovment` algorithm</span>
- <span class="sd"> - Starting with the new generated solution, the local search algorithm will return a new solution</span>
- <span class="sd"> - If the obtained solution is better than the best solution known into `IteratedLocalSearch`, then the solution is replaced</span>
- <span class="sd"> - Restart this process until stopping critirion (number of expected evaluations)</span>
- <span class="sd"> Attributes:</span>
- <span class="sd"> initalizer: {function} -- basic function strategy to initialize solution</span>
- <span class="sd"> evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)</span>
- <span class="sd"> operators: {[Operator]} -- list of operator to use when launching algorithm</span>
- <span class="sd"> policy: {Policy} -- Policy class implementation strategy to select operators</span>
- <span class="sd"> validator: {function} -- basic function to check if solution is valid or not under some constraints</span>
- <span class="sd"> maximise: {bool} -- specify kind of optimisation problem </span>
- <span class="sd"> currentSolution: {Solution} -- current solution managed for current evaluation</span>
- <span class="sd"> bestSolution: {Solution} -- best solution found so far during running algorithm</span>
- <span class="sd"> callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm</span>
- <span class="sd"> </span>
- <span class="sd"> Example:</span>
- <span class="sd"> >>> import random</span>
- <span class="sd"> >>> # operators import</span>
- <span class="sd"> >>> from macop.operators.discrete.crossovers import SimpleCrossover</span>
- <span class="sd"> >>> from macop.operators.discrete.mutators import SimpleMutation</span>
- <span class="sd"> >>> # policy import</span>
- <span class="sd"> >>> from macop.policies.classicals import RandomPolicy</span>
- <span class="sd"> >>> # solution and algorithm</span>
- <span class="sd"> >>> from macop.solutions.discrete import BinarySolution</span>
- <span class="sd"> >>> from macop.algorithms.mono import IteratedLocalSearch</span>
- <span class="sd"> >>> # evaluator import</span>
- <span class="sd"> >>> from macop.evaluators.discrete.mono import KnapsackEvaluator</span>
- <span class="sd"> >>> # evaluator initialization (worths objects passed into data)</span>
- <span class="sd"> >>> problem_size = 20</span>
- <span class="sd"> >>> worths = [ random.randint(0, 20) for i in range(problem_size) ]</span>
- <span class="sd"> >>> evaluator = KnapsackEvaluator(data={'worths': worths})</span>
- <span class="sd"> >>> # validator specification (based on weights of each objects)</span>
- <span class="sd"> >>> weights = [ random.randint(5, 30) for i in range(problem_size) ]</span>
- <span class="sd"> >>> validator = lambda solution: True if sum([weights[i] for i, value in enumerate(solution._data) if value == 1]) < 200 else False</span>
- <span class="sd"> >>> # initializer function with lambda function</span>
- <span class="sd"> >>> initializer = lambda x=20: BinarySolution.random(x, validator)</span>
- <span class="sd"> >>> # operators list with crossover and mutation</span>
- <span class="sd"> >>> operators = [SimpleCrossover(), SimpleMutation()]</span>
- <span class="sd"> >>> policy = RandomPolicy(operators)</span>
- <span class="sd"> >>> algo = IteratedLocalSearch(initializer, evaluator, operators, policy, validator, maximise=True, verbose=False)</span>
- <span class="sd"> >>> # run the algorithm</span>
- <span class="sd"> >>> solution = algo.run(100, ls_evaluations=10)</span>
- <span class="sd"> >>> solution._score</span>
- <span class="sd"> 137</span>
- <span class="sd"> """</span>
- <div class="viewcode-block" id="IteratedLocalSearch.run"><a class="viewcode-back" href="../../../macop/macop.algorithms.mono.html#macop.algorithms.mono.IteratedLocalSearch.run">[docs]</a> <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">evaluations</span><span class="p">,</span> <span class="n">ls_evaluations</span><span class="o">=</span><span class="mi">100</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Run the iterated local search algorithm using local search (EvE compromise)</span>
- <span class="sd"> Args:</span>
- <span class="sd"> evaluations: {int} -- number of global evaluations for ILS</span>
- <span class="sd"> ls_evaluations: {int} -- number of Local search evaluations (default: 100)</span>
- <span class="sd"> Returns:</span>
- <span class="sd"> {Solution} -- best solution found</span>
- <span class="sd"> """</span>
- <span class="c1"># by default use of mother method to initialize variables</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">evaluations</span><span class="p">)</span>
- <span class="c1"># enable resuming for ILS</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">resume</span><span class="p">()</span>
- <span class="c1"># initialize current solution</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">initRun</span><span class="p">()</span>
- <span class="c1"># passing global evaluation param from ILS</span>
- <span class="n">ls</span> <span class="o">=</span> <span class="n">HillClimberFirstImprovment</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_initializer</span><span class="p">,</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_evaluator</span><span class="p">,</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_operators</span><span class="p">,</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_policy</span><span class="p">,</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_validator</span><span class="p">,</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_maximise</span><span class="p">,</span>
- <span class="n">verbose</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_verbose</span><span class="p">,</span>
- <span class="n">parent</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
- <span class="c1"># add same callbacks</span>
- <span class="k">for</span> <span class="n">callback</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_callbacks</span><span class="p">:</span>
- <span class="n">ls</span><span class="o">.</span><span class="n">addCallback</span><span class="p">(</span><span class="n">callback</span><span class="p">)</span>
- <span class="c1"># local search algorithm implementation</span>
- <span class="k">while</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">():</span>
- <span class="c1"># create and search solution from local search</span>
- <span class="n">newSolution</span> <span class="o">=</span> <span class="n">ls</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">ls_evaluations</span><span class="p">)</span>
- <span class="c1"># if better solution than currently, replace it</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">isBetter</span><span class="p">(</span><span class="n">newSolution</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span> <span class="o">=</span> <span class="n">newSolution</span>
- <span class="c1"># number of evaluatins increased from LocalSearch</span>
- <span class="c1"># increase number of evaluations and progress are then not necessary there</span>
- <span class="c1">#self.increaseEvaluation()</span>
- <span class="c1">#self.progress()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">information</span><span class="p">()</span>
- <span class="n">logging</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="sa">f</span><span class="s2">"End of </span><span class="si">{</span><span class="nb">type</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, best solution found </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span>
-
- <span class="bp">self</span><span class="o">.</span><span class="n">end</span><span class="p">()</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span></div></div>
- </pre></div>
- </div>
-
- </div>
- <footer>
-
- <hr/>
- <div role="contentinfo">
- <p>
- © Copyright 2020, Jérôme BUISINE
- </p>
- </div>
- Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
- </footer>
- </div>
- </div>
- </section>
- </div>
-
- <script type="text/javascript">
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
-
-
-
-
- </body>
- </html>
|