Optimisation modules built for optimization problem during thesis

Jérôme BUISINE ba2569ee27 MOSubProblem test added преди 3 години
.github 9f3aca158a Fix issue into basic checkpoint преди 3 години
docs ba2569ee27 MOSubProblem test added преди 3 години
examples ed1cb1cb7d example update for alrogithms and evaluators преди 3 години
macop ba2569ee27 MOSubProblem test added преди 3 години
.gitignore feb1e4263c enable solutions dynamic imports using python package преди 3 години
CONTRIBUTING.md 287df287e2 update math syntax on paper преди 3 години
LICENSE 3589fb944b Initial commit преди 4 години
README.md 287df287e2 update math syntax on paper преди 3 години
__init__.py 0a1b108095 First version of OR framework преди 4 години
build.sh 899ec8e7d3 rename all paramaters as protected преди 3 години
logo_macop.png df8251b5ac new package name : macop; use of new policy for operators преди 3 години
paper.bib 0e743faba7 Prepare to major version преди 3 години
paper.md 287df287e2 update math syntax on paper преди 3 години
requirements.txt 4fbbbf39d3 documentation updates for algorithms преди 3 години
setup.py ed1cb1cb7d example update for alrogithms and evaluators преди 3 години

README.md

Minimalist And Customisable Optimisation Package

Description

macop is an optimisation Python package which not implement the whole available algorithms in the literature but let you the possibility to quickly develop and test your own algorithm and strategies. The main objective of this package is to be the most flexible as possible and hence, to offer a maximum of implementation possibilities.

Modules

  • algorithms: generic and implemented OR algorithms
  • evaluator: example of an evaluation function to use (you have to implement your own evaluation function)
  • solutions: solutions used to represent problem data
  • operators: mutators, crossovers update of solution. This folder also has policies folder to manage the way of update and use solution.
  • callbacks: callbacks folder where Callback class is available for making callback instructions every number of evaluations.

Note: you can pass a custom validator function to the algorithm in order to check if a solution is always correct for your needs after an update.

How to use ?

Fully documentation of package with examples is available.

You can also see examples of use:

Add as dependency

git submodule add https://github.com/jbuisine/macop.git

License

The MIT License