1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- # main imports
- import logging
- import os
- import random
- import numpy as np
- # module imports
- from macop.solutions.discrete import CombinatoryIntegerSolution
- from macop.evaluators.discrete.mono import QAPEvaluator
- from macop.operators.discrete.mutators import SimpleMutation
- from macop.policies.classicals import RandomPolicy
- from macop.policies.reinforcement import UCBPolicy
- from macop.algorithms.mono import IteratedLocalSearch as ILS
- from macop.algorithms.mono import HillClimberFirstImprovment
- from macop.callbacks.classicals import BasicCheckpoint
- if not os.path.exists('data'):
- os.makedirs('data')
- # logging configuration
- logging.basicConfig(format='%(asctime)s %(message)s', filename='data/example_qap.log', level=logging.DEBUG)
- random.seed(42)
- # usefull instance data
- n = 100
- qap_instance_file = 'instances/qap/qap_instance.txt'
- filepath = "data/checkpoints_qap.csv"
- # default validator
- def validator(solution):
- if len(list(solution._data)) > len(set(list(solution._data))):
- print("not valid")
- return False
- return True
- # define init random solution
- def init():
- return CombinatoryIntegerSolution.random(n, validator)
- def main():
- with open(qap_instance_file, 'r') as f:
- file_data = f.readlines()
- print(f'Instance information {file_data[0]}')
- D_lines = file_data[1:n + 1]
- D_data = ''.join(D_lines).replace('\n', '')
- F_lines = file_data[n:2 * n + 1]
- F_data = ''.join(F_lines).replace('\n', '')
- D_matrix = np.fromstring(D_data, dtype=float, sep=' ').reshape(n, n)
- print(f'D matrix shape: {D_matrix.shape}')
- F_matrix = np.fromstring(F_data, dtype=float, sep=' ').reshape(n, n)
- print(f'F matrix shape: {F_matrix.shape}')
- operators = [SimpleMutation()]
- policy = RandomPolicy(operators)
- callback = BasicCheckpoint(every=5, filepath=filepath)
- evaluator = QAPEvaluator(data={'F': F_matrix, 'D': D_matrix})
- # passing global evaluation param from ILS
- hcfi = HillClimberFirstImprovment(init, evaluator, operators, policy, validator, maximise=False, verbose=True)
- algo = ILS(init, evaluator, operators, policy, validator, localSearch=hcfi, maximise=False, verbose=True)
-
- # add callback into callback list
- algo.addCallback(callback)
- bestSol = algo.run(10000, ls_evaluations=100)
- print('Solution for QAP instance score is {}'.format(evaluator.compute(bestSol)))
- if __name__ == "__main__":
- main()
|