Optimisation modules built for optimization problem during thesis

Jérôme BUISINE d836065f75 documentation of validator added 3 anni fa
.github b2fdd657af remove gitignore _build folder 3 anni fa
docs d836065f75 documentation of validator added 3 anni fa
examples ed1cb1cb7d example update for alrogithms and evaluators 3 anni fa
macop cccc31223e Documentation updates 3 anni fa
.gitignore b2fdd657af remove gitignore _build folder 3 anni fa
CONTRIBUTING.md 287df287e2 update math syntax on paper 4 anni fa
LICENSE 1bb5cb9f48 start of new documentation explanation 3 anni fa
README.md 287df287e2 update math syntax on paper 4 anni fa
__init__.py 0a1b108095 First version of OR framework 5 anni fa
build.sh 899ec8e7d3 rename all paramaters as protected 4 anni fa
logo_macop.png df8251b5ac new package name : macop; use of new policy for operators 4 anni fa
paper.bib 0e743faba7 Prepare to major version 4 anni fa
paper.md 287df287e2 update math syntax on paper 4 anni fa
requirements.txt 4fbbbf39d3 documentation updates for algorithms 4 anni fa
setup.py ed1cb1cb7d example update for alrogithms and evaluators 3 anni fa

README.md

Minimalist And Customisable Optimisation Package

Description

macop is an optimisation Python package which not implement the whole available algorithms in the literature but let you the possibility to quickly develop and test your own algorithm and strategies. The main objective of this package is to be the most flexible as possible and hence, to offer a maximum of implementation possibilities.

Modules

  • algorithms: generic and implemented OR algorithms
  • evaluator: example of an evaluation function to use (you have to implement your own evaluation function)
  • solutions: solutions used to represent problem data
  • operators: mutators, crossovers update of solution. This folder also has policies folder to manage the way of update and use solution.
  • callbacks: callbacks folder where Callback class is available for making callback instructions every number of evaluations.

Note: you can pass a custom validator function to the algorithm in order to check if a solution is always correct for your needs after an update.

How to use ?

Fully documentation of package with examples is available.

You can also see examples of use:

Add as dependency

git submodule add https://github.com/jbuisine/macop.git

License

The MIT License