123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541 |
- <!DOCTYPE html>
- <!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
- <!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
- <head>
- <meta charset="utf-8">
-
- <meta name="viewport" content="width=device-width, initial-scale=1.0">
-
- <title>macop.algorithms.multi.MOEAD — macop v0.3.3 documentation</title>
-
-
-
-
-
-
- <script type="text/javascript" src="../../../../_static/js/modernizr.min.js"></script>
-
-
- <script type="text/javascript" id="documentation_options" data-url_root="../../../../" src="../../../../_static/documentation_options.js"></script>
- <script type="text/javascript" src="../../../../_static/jquery.js"></script>
- <script type="text/javascript" src="../../../../_static/underscore.js"></script>
- <script type="text/javascript" src="../../../../_static/doctools.js"></script>
- <script type="text/javascript" src="../../../../_static/language_data.js"></script>
-
- <script type="text/javascript" src="../../../../_static/js/theme.js"></script>
-
-
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
-
- <div class="wy-grid-for-nav">
-
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
-
-
- <a href="../../../../index.html" class="icon icon-home"> macop
-
-
- </a>
-
-
-
- <div class="version">
- 0.3.3
- </div>
-
-
-
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
-
- </div>
- <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
-
-
-
-
-
-
- <p class="caption"><span class="caption-text">Contents:</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../description.html">Description</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../macop.html">Documentation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../examples.html">Some examples</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../contributing.html">Contributing</a></li>
- </ul>
-
-
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
-
- <nav class="wy-nav-top" aria-label="top navigation">
-
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">macop</a>
-
- </nav>
- <div class="wy-nav-content">
-
- <div class="rst-content">
-
-
- <div role="navigation" aria-label="breadcrumbs navigation">
- <ul class="wy-breadcrumbs">
-
- <li><a href="../../../../index.html">Docs</a> »</li>
-
- <li><a href="../../../index.html">Module code</a> »</li>
-
- <li>macop.algorithms.multi.MOEAD</li>
-
-
- <li class="wy-breadcrumbs-aside">
-
- </li>
-
- </ul>
-
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for macop.algorithms.multi.MOEAD</h1><div class="highlight"><pre>
- <span></span><span class="sd">"""Multi-Ojective Evolutionary Algorithm with Scalar Decomposition algorithm</span>
- <span class="sd">"""</span>
- <span class="c1"># main imports</span>
- <span class="kn">import</span> <span class="nn">pkgutil</span>
- <span class="kn">import</span> <span class="nn">logging</span>
- <span class="kn">import</span> <span class="nn">math</span>
- <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="kn">import</span> <span class="nn">sys</span>
- <span class="kn">from</span> <span class="nn">...utils.color</span> <span class="kn">import</span> <span class="n">macop_text</span><span class="p">,</span> <span class="n">macop_line</span><span class="p">,</span> <span class="n">macop_progress</span>
- <span class="kn">from</span> <span class="nn">...utils.modules</span> <span class="kn">import</span> <span class="n">load_class</span>
- <span class="c1"># module imports</span>
- <span class="kn">from</span> <span class="nn">..Algorithm</span> <span class="kn">import</span> <span class="n">Algorithm</span>
- <span class="kn">from</span> <span class="nn">.MOSubProblem</span> <span class="kn">import</span> <span class="n">MOSubProblem</span>
- <span class="c1"># import all available solutions</span>
- <span class="k">for</span> <span class="n">loader</span><span class="p">,</span> <span class="n">module_name</span><span class="p">,</span> <span class="n">is_pkg</span> <span class="ow">in</span> <span class="n">pkgutil</span><span class="o">.</span><span class="n">walk_packages</span><span class="p">(</span>
- <span class="n">path</span><span class="o">=</span><span class="p">[</span><span class="s1">'macop/solutions'</span><span class="p">],</span> <span class="n">prefix</span><span class="o">=</span><span class="s1">'macop.solutions.'</span><span class="p">):</span>
- <span class="n">_module</span> <span class="o">=</span> <span class="n">loader</span><span class="o">.</span><span class="n">find_module</span><span class="p">(</span><span class="n">module_name</span><span class="p">)</span><span class="o">.</span><span class="n">load_module</span><span class="p">(</span><span class="n">module_name</span><span class="p">)</span>
- <span class="nb">globals</span><span class="p">()[</span><span class="n">module_name</span><span class="p">]</span> <span class="o">=</span> <span class="n">_module</span>
- <span class="k">def</span> <span class="nf">moEvaluator</span><span class="p">(</span><span class="n">_solution</span><span class="p">,</span> <span class="n">_evaluator</span><span class="p">,</span> <span class="n">_weights</span><span class="p">):</span>
- <span class="n">scores</span> <span class="o">=</span> <span class="p">[</span><span class="nb">eval</span><span class="p">(</span><span class="n">_solution</span><span class="p">)</span> <span class="k">for</span> <span class="nb">eval</span> <span class="ow">in</span> <span class="n">_evaluator</span><span class="p">]</span>
- <span class="c1"># associate objectives scores to solution</span>
- <span class="n">_solution</span><span class="o">.</span><span class="n">scores</span> <span class="o">=</span> <span class="n">scores</span>
- <span class="k">return</span> <span class="nb">sum</span><span class="p">([</span><span class="n">scores</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">w</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">_weights</span><span class="p">)])</span>
- <div class="viewcode-block" id="MOEAD"><a class="viewcode-back" href="../../../../macop/macop.algorithms.multi.MOEAD.html#macop.algorithms.multi.MOEAD.MOEAD">[docs]</a><span class="k">class</span> <span class="nc">MOEAD</span><span class="p">(</span><span class="n">Algorithm</span><span class="p">):</span>
- <span class="sd">"""Multi-Ojective Evolutionary Algorithm with Scalar Decomposition</span>
- <span class="sd"> Attributes:</span>
- <span class="sd"> mu: {int} -- number of sub problems</span>
- <span class="sd"> T: {[float]} -- number of neightbors for each sub problem</span>
- <span class="sd"> nObjectives: {int} -- number of objectives (based of number evaluator)</span>
- <span class="sd"> initalizer: {function} -- basic function strategy to initialize solution</span>
- <span class="sd"> evaluator: {[function]} -- list of basic function in order to obtained fitness (multiple objectives)</span>
- <span class="sd"> operators: {[Operator]} -- list of operator to use when launching algorithm</span>
- <span class="sd"> policy: {Policy} -- Policy class implementation strategy to select operators</span>
- <span class="sd"> validator: {function} -- basic function to check if solution is valid or not under some constraints</span>
- <span class="sd"> maximise: {bool} -- specify kind of optimization problem </span>
- <span class="sd"> population: [{Solution}] -- population of solution, one for each sub problem</span>
- <span class="sd"> pfPop: [{Solution}] -- pareto front population</span>
- <span class="sd"> weights: [[{float}]] -- random weights used for custom mu sub problems</span>
- <span class="sd"> callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
- <span class="n">_mu</span><span class="p">,</span>
- <span class="n">_T</span><span class="p">,</span>
- <span class="n">_initalizer</span><span class="p">,</span>
- <span class="n">_evaluator</span><span class="p">,</span>
- <span class="n">_operators</span><span class="p">,</span>
- <span class="n">_policy</span><span class="p">,</span>
- <span class="n">_validator</span><span class="p">,</span>
- <span class="n">_maximise</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
- <span class="n">_parent</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
- <span class="c1"># redefinition of constructor to well use `initRun` method</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">initializer</span> <span class="o">=</span> <span class="n">_initalizer</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">evaluator</span> <span class="o">=</span> <span class="n">_evaluator</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">operators</span> <span class="o">=</span> <span class="n">_operators</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">policy</span> <span class="o">=</span> <span class="n">_policy</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">validator</span> <span class="o">=</span> <span class="n">_validator</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">callbacks</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="c1"># by default</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">numberOfEvaluations</span> <span class="o">=</span> <span class="mi">0</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">maxEvaluations</span> <span class="o">=</span> <span class="mi">0</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">nObjectives</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">_evaluator</span><span class="p">)</span>
- <span class="c1"># other parameters</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">parent</span> <span class="o">=</span> <span class="n">_parent</span> <span class="c1"># parent algorithm if it's sub algorithm</span>
- <span class="c1">#self.maxEvaluations = 0 # by default</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">maximise</span> <span class="o">=</span> <span class="n">_maximise</span>
- <span class="c1"># track reference of algo into operator (keep an eye into best solution)</span>
- <span class="k">for</span> <span class="n">operator</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">operators</span><span class="p">:</span>
- <span class="n">operator</span><span class="o">.</span><span class="n">setAlgo</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
- <span class="c1"># also track reference for policy</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">policy</span><span class="o">.</span><span class="n">setAlgo</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">_mu</span> <span class="o"><</span> <span class="n">_T</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'`mu` cannot be less than `T`'</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">mu</span> <span class="o">=</span> <span class="n">_mu</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">T</span> <span class="o">=</span> <span class="n">_T</span>
- <span class="c1"># initialize neighbors for each sub problem</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">setNeighbors</span><span class="p">()</span>
- <span class="n">weights</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">nObjectives</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mu</span><span class="p">):</span>
- <span class="n">angle</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">pi</span> <span class="o">/</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">i</span> <span class="o">/</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mu</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
- <span class="n">weights</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="n">math</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">angle</span><span class="p">),</span> <span class="n">math</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">angle</span><span class="p">)])</span>
- <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">nObjectives</span> <span class="o">>=</span> <span class="mi">3</span><span class="p">:</span>
- <span class="c1"># random weights using uniform</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mu</span><span class="p">):</span>
- <span class="n">w_i</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">nObjectives</span><span class="p">)</span>
- <span class="n">weights</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">w_i</span> <span class="o">/</span> <span class="nb">sum</span><span class="p">(</span><span class="n">w_i</span><span class="p">))</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'Unvalid number of objectives'</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">weights</span> <span class="o">=</span> <span class="n">weights</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">subProblems</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mu</span><span class="p">):</span>
- <span class="c1"># compute weight sum from solution</span>
- <span class="n">sub_evaluator</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">_solution</span><span class="p">:</span> <span class="n">moEvaluator</span><span class="p">(</span>
- <span class="n">_solution</span><span class="p">,</span> <span class="n">_evaluator</span><span class="p">,</span> <span class="n">weights</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
- <span class="c1"># intialize each sub problem</span>
- <span class="n">subProblem</span> <span class="o">=</span> <span class="n">MOSubProblem</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">weights</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">_initalizer</span><span class="p">,</span>
- <span class="n">sub_evaluator</span><span class="p">,</span> <span class="n">_operators</span><span class="p">,</span> <span class="n">_policy</span><span class="p">,</span>
- <span class="n">_validator</span><span class="p">,</span> <span class="n">_maximise</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">subProblems</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">subProblem</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">population</span> <span class="o">=</span> <span class="p">[</span><span class="kc">None</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mu</span><span class="p">)]</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">pfPop</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="c1"># ref point based on number of evaluators</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">maximise</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">refPoint</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">nObjectives</span><span class="p">)]</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">refPoint</span> <span class="o">=</span> <span class="p">[</span>
- <span class="n">sys</span><span class="o">.</span><span class="n">float_info</span><span class="o">.</span><span class="n">max</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">nObjectives</span><span class="p">)</span>
- <span class="p">]</span>
- <div class="viewcode-block" id="MOEAD.initRun"><a class="viewcode-back" href="../../../../macop/macop.algorithms.multi.MOEAD.html#macop.algorithms.multi.MOEAD.MOEAD.initRun">[docs]</a> <span class="k">def</span> <span class="nf">initRun</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Method which initialiazes or re-initializes the whole algorithm context specifically for MOEAD</span>
- <span class="sd"> """</span>
- <span class="c1"># initialization is done during run method</span>
- <span class="k">pass</span></div>
- <div class="viewcode-block" id="MOEAD.run"><a class="viewcode-back" href="../../../../macop/macop.algorithms.multi.MOEAD.html#macop.algorithms.multi.MOEAD.MOEAD.run">[docs]</a> <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">_evaluations</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Run the local search algorithm</span>
- <span class="sd"> Args:</span>
- <span class="sd"> _evaluations: {int} -- number of Local search evaluations</span>
- <span class="sd"> </span>
- <span class="sd"> Returns:</span>
- <span class="sd"> {Solution} -- best solution found</span>
- <span class="sd"> """</span>
- <span class="c1"># by default use of mother method to initialize variables</span>
- <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">_evaluations</span><span class="p">)</span>
- <span class="c1"># initialize each sub problem</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mu</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">subProblems</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">population</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">subProblems</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">bestSolution</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">pfPop</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">subProblems</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">bestSolution</span><span class="p">)</span>
- <span class="c1"># enable callback resume for MOEAD</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">resume</span><span class="p">()</span>
- <span class="c1"># MOEAD algorithm implementation</span>
- <span class="k">while</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">():</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mu</span><span class="p">):</span>
- <span class="c1"># run 1 iteration into sub problem `i`</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">subProblems</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
- <span class="n">spBestSolution</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">subProblems</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">bestSolution</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">updateRefPoint</span><span class="p">(</span><span class="n">spBestSolution</span><span class="p">)</span>
- <span class="c1"># for each neighbor of current sub problem update solution if better</span>
- <span class="n">improvment</span> <span class="o">=</span> <span class="kc">False</span>
- <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">neighbors</span><span class="p">[</span><span class="n">i</span><span class="p">]:</span>
- <span class="k">if</span> <span class="n">spBestSolution</span><span class="o">.</span><span class="n">fitness</span><span class="p">(</span>
- <span class="p">)</span> <span class="o">></span> <span class="bp">self</span><span class="o">.</span><span class="n">subProblems</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="o">.</span><span class="n">bestSolution</span><span class="o">.</span><span class="n">fitness</span><span class="p">():</span>
- <span class="c1"># create new solution based on current new if better, computes fitness associated to new solution for sub problem</span>
- <span class="n">class_name</span> <span class="o">=</span> <span class="nb">type</span><span class="p">(</span><span class="n">spBestSolution</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span>
- <span class="c1"># dynamically load solution class if unknown</span>
- <span class="k">if</span> <span class="n">class_name</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">sys</span><span class="o">.</span><span class="n">modules</span><span class="p">:</span>
- <span class="n">load_class</span><span class="p">(</span><span class="n">class_name</span><span class="p">,</span> <span class="nb">globals</span><span class="p">())</span>
- <span class="n">newSolution</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span>
- <span class="nb">globals</span><span class="p">()[</span><span class="s1">'macop.solutions.'</span> <span class="o">+</span> <span class="n">class_name</span><span class="p">],</span>
- <span class="n">class_name</span><span class="p">)(</span><span class="n">spBestSolution</span><span class="o">.</span><span class="n">data</span><span class="p">,</span>
- <span class="nb">len</span><span class="p">(</span><span class="n">spBestSolution</span><span class="o">.</span><span class="n">data</span><span class="p">))</span>
- <span class="c1"># evaluate solution for new sub problem and update as best solution</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">subProblems</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">newSolution</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">subProblems</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="o">.</span><span class="n">bestSolution</span> <span class="o">=</span> <span class="n">newSolution</span>
- <span class="c1"># update population solution for this sub problem</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">population</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">newSolution</span>
- <span class="n">improvment</span> <span class="o">=</span> <span class="kc">True</span>
- <span class="c1"># add new solution if improvment is idenfity</span>
- <span class="k">if</span> <span class="n">improvment</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">pfPop</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">spBestSolution</span><span class="p">)</span>
- <span class="c1"># update pareto front</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">pfPop</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">paretoFront</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">pfPop</span><span class="p">)</span>
- <span class="c1"># add progress here</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">progress</span><span class="p">()</span>
- <span class="c1"># stop algorithm if necessary</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">():</span>
- <span class="k">break</span>
- <span class="n">logging</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="s2">"End of </span><span class="si">%s</span><span class="s2">, best solution found </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span>
- <span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">population</span><span class="p">))</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">end</span><span class="p">()</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">pfPop</span></div>
- <div class="viewcode-block" id="MOEAD.progress"><a class="viewcode-back" href="../../../../macop/macop.algorithms.multi.MOEAD.html#macop.algorithms.multi.MOEAD.MOEAD.progress">[docs]</a> <span class="k">def</span> <span class="nf">progress</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Log progress and apply callbacks if necessary</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">callbacks</span><span class="p">)</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
- <span class="k">for</span> <span class="n">callback</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">callbacks</span><span class="p">:</span>
- <span class="n">callback</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
- <span class="n">macop_progress</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">getGlobalEvaluation</span><span class="p">(),</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">getGlobalMaxEvaluation</span><span class="p">())</span>
- <span class="n">logging</span><span class="o">.</span><span class="n">info</span><span class="p">(</span>
- <span class="s2">"-- </span><span class="si">%s</span><span class="s2"> evaluation </span><span class="si">%s</span><span class="s2"> of </span><span class="si">%s</span><span class="s2"> (</span><span class="si">%s%%</span><span class="s2">)"</span> <span class="o">%</span>
- <span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">numberOfEvaluations</span><span class="p">,</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">maxEvaluations</span><span class="p">,</span> <span class="s2">"</span><span class="si">{0:.2f}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
- <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">numberOfEvaluations</span><span class="p">)</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">maxEvaluations</span> <span class="o">*</span> <span class="mf">100.</span><span class="p">)))</span></div>
- <span class="k">def</span> <span class="nf">setNeighbors</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="n">dmin</span> <span class="o">=</span> <span class="n">dmax</span> <span class="o">=</span> <span class="mi">0</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">T</span> <span class="o">%</span> <span class="mi">2</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
- <span class="n">dmin</span> <span class="o">=</span> <span class="o">-</span><span class="nb">int</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">T</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
- <span class="n">dmax</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">T</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">dmin</span> <span class="o">=</span> <span class="o">-</span><span class="nb">int</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">T</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
- <span class="n">dmax</span> <span class="o">=</span> <span class="o">+</span><span class="bp">self</span><span class="o">.</span><span class="n">T</span> <span class="o">/</span> <span class="mi">2</span>
- <span class="c1"># init neighbord list</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">neighbors</span> <span class="o">=</span> <span class="p">[[]</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mu</span><span class="p">)]</span>
- <span class="k">for</span> <span class="n">direction</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="n">dmin</span><span class="p">):</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">T</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">neighbors</span><span class="p">[</span><span class="n">direction</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">direction</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="o">-</span><span class="n">dmin</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">mu</span> <span class="o">-</span> <span class="n">dmax</span><span class="p">):</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">direction</span> <span class="o">+</span> <span class="n">dmin</span><span class="p">,</span> <span class="n">direction</span> <span class="o">+</span> <span class="n">dmax</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">neighbors</span><span class="p">[</span><span class="n">direction</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">direction</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mu</span> <span class="o">-</span> <span class="n">dmax</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">mu</span><span class="p">):</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mu</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">T</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">mu</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">neighbors</span><span class="p">[</span><span class="n">direction</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">updateRefPoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">_solution</span><span class="p">):</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">maximise</span><span class="p">:</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">evaluator</span><span class="p">)):</span>
- <span class="k">if</span> <span class="n">_solution</span><span class="o">.</span><span class="n">scores</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">></span> <span class="bp">self</span><span class="o">.</span><span class="n">refPoint</span><span class="p">[</span><span class="n">i</span><span class="p">]:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">refPoint</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">_solution</span><span class="o">.</span><span class="n">scores</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">evaluator</span><span class="p">)):</span>
- <span class="k">if</span> <span class="n">_solution</span><span class="o">.</span><span class="n">scores</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">refPoint</span><span class="p">[</span><span class="n">i</span><span class="p">]:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">refPoint</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">_solution</span><span class="o">.</span><span class="n">scores</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
- <span class="k">def</span> <span class="nf">paretoFront</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">_population</span><span class="p">):</span>
- <span class="n">paFront</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="n">indexes</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="n">nObjectives</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">evaluator</span><span class="p">)</span>
- <span class="n">nSolutions</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">_population</span><span class="p">)</span>
- <span class="c1"># find dominated solution</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">nSolutions</span><span class="p">):</span>
- <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">nSolutions</span><span class="p">):</span>
- <span class="k">if</span> <span class="n">j</span> <span class="ow">in</span> <span class="n">indexes</span><span class="p">:</span>
- <span class="k">continue</span>
- <span class="n">nDominated</span> <span class="o">=</span> <span class="mi">0</span>
- <span class="c1"># check number of dominated objectives of current solution by the others solution</span>
- <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">evaluator</span><span class="p">)):</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">maximise</span><span class="p">:</span>
- <span class="k">if</span> <span class="n">_population</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">scores</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o"><</span> <span class="n">_population</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="o">.</span><span class="n">scores</span><span class="p">[</span><span class="n">k</span><span class="p">]:</span>
- <span class="n">nDominated</span> <span class="o">+=</span> <span class="mi">1</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">if</span> <span class="n">_population</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">scores</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">></span> <span class="n">_population</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="o">.</span><span class="n">scores</span><span class="p">[</span><span class="n">k</span><span class="p">]:</span>
- <span class="n">nDominated</span> <span class="o">+=</span> <span class="mi">1</span>
- <span class="k">if</span> <span class="n">nDominated</span> <span class="o">==</span> <span class="n">nObjectives</span><span class="p">:</span>
- <span class="n">indexes</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
- <span class="k">break</span>
- <span class="c1"># store the non dominated solution into pareto front</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">nSolutions</span><span class="p">):</span>
- <span class="k">if</span> <span class="n">i</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">indexes</span><span class="p">:</span>
- <span class="n">paFront</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">_population</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
- <span class="k">return</span> <span class="n">paFront</span>
- <div class="viewcode-block" id="MOEAD.end"><a class="viewcode-back" href="../../../../macop/macop.algorithms.multi.MOEAD.html#macop.algorithms.multi.MOEAD.MOEAD.end">[docs]</a> <span class="k">def</span> <span class="nf">end</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""Display end message into `run` method</span>
- <span class="sd"> """</span>
- <span class="nb">print</span><span class="p">(</span>
- <span class="n">macop_text</span><span class="p">(</span><span class="s1">'(</span><span class="si">{}</span><span class="s1">) Found after </span><span class="si">{}</span><span class="s1"> evaluations'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
- <span class="nb">type</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">numberOfEvaluations</span><span class="p">)))</span>
- <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">solution</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">pfPop</span><span class="p">):</span>
- <span class="nb">print</span><span class="p">(</span><span class="s1">' - [</span><span class="si">{}</span><span class="s1">] </span><span class="si">{}</span><span class="s1"> : </span><span class="si">{}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">solution</span><span class="o">.</span><span class="n">scores</span><span class="p">,</span> <span class="n">solution</span><span class="p">))</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">macop_line</span><span class="p">())</span></div>
- <span class="k">def</span> <span class="nf">information</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="n">logging</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="s2">"-- Pareto front :"</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">solution</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">pfPop</span><span class="p">):</span>
- <span class="n">logging</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="s2">"-- </span><span class="si">%s</span><span class="s2">] SCORE </span><span class="si">%s</span><span class="s2"> - </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span>
- <span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">solution</span><span class="o">.</span><span class="n">scores</span><span class="p">,</span> <span class="n">solution</span><span class="p">))</span>
- <span class="k">def</span> <span class="fm">__str__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">return</span> <span class="s2">"</span><span class="si">%s</span><span class="s2"> using </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span> <span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span> <span class="nb">type</span><span class="p">(</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">population</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="p">)</span></div>
- </pre></div>
- </div>
-
- </div>
- <footer>
-
- <hr/>
- <div role="contentinfo">
- <p>
- © Copyright 2020, Jérôme BUISINE
- </p>
- </div>
- Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
- </footer>
- </div>
- </div>
- </section>
- </div>
-
- <script type="text/javascript">
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
-
-
-
-
- </body>
- </html>
|