12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- # main imports
- import numpy as np
- import pandas as pd
- import os, sys, argparse
- # models imports
- from sklearn import linear_model
- from sklearn import svm
- from sklearn.utils import shuffle
- from joblib import dump, load
- # image processing imports
- from PIL import Image
- # modules and config imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- def reconstruct(_scene_name, _n):
-
- # construct the empty output image
- output_image = np.empty([cfg.number_of_rows, cfg.number_of_columns])
- # load scene and its `n` first pixel value data
- scene_path = os.path.join(cfg.dataset_path, _scene_name)
- for id_column in range(cfg.number_of_columns):
- folder_path = os.path.join(scene_path, str(id_column))
- for id_row in range(cfg.number_of_rows):
-
- pixel_filename = _scene_name + '_' + str(id_column) + '_' + str(id_row) + ".dat"
- pixel_file_path = os.path.join(folder_path, pixel_filename)
-
- with open(pixel_file_path, 'r') as f:
- # predict the expected pixel value
- lines = [float(l) for l in f.readlines()]
- mean = sum(lines[0:int(_n)]) / float(_n)
- output_image[id_row, id_column] = mean
- print("{0:.2f}%".format(id_column / cfg.number_of_columns * 100))
- sys.stdout.write("\033[F")
- return output_image
- def main():
- parser = argparse.ArgumentParser(description="Train model and saved it")
- parser.add_argument('--scene', type=str, help='Scene name to reconstruct', choices=cfg.scenes_list)
- parser.add_argument('--n', type=str, help='Number of samples to take')
- parser.add_argument('--image_name', type=str, help="The ouput image name")
- args = parser.parse_args()
- param_scene_name = args.scene
- param_n = args.n
- param_image_name = args.image_name
- output_image = reconstruct(param_scene_name, param_n)
- if not os.path.exists(cfg.reconstructed_folder):
- os.makedirs(cfg.reconstructed_folder)
- image_path = os.path.join(cfg.reconstructed_folder, param_image_name)
- img = Image.fromarray(np.uint8(output_image))
- img.save(image_path)
- if __name__== "__main__":
- main()
|