123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- import numpy as np
- import pandas as pd
- import json
- import os, sys, argparse
- from keras.models import model_from_json
- import modules.config as cfg
- from modules.features import compute_feature
- from joblib import dump, load
- from PIL import Image
- def reconstruct(_scene_name, _model_path, _n, _feature_choice):
-
- # construct the empty output image
- output_image = np.empty([cfg.number_of_rows, cfg.number_of_columns])
- # load the trained model
- with open(_model_path, 'r') as f:
- json_model = json.load(f)
- model = model_from_json(json_model)
- model.load_weights(_model_path.replace('.json', '.h5'))
- model.compile(loss='binary_crossentropy',
- optimizer='adam',
- metrics=['accuracy'])
- # load scene and its `n` first pixel value data
- scene_path = os.path.join(cfg.folder_scenes_path, _scene_name)
- for id_column in range(cfg.number_of_columns):
- folder_path = os.path.join(scene_path, str(id_column))
- pixels_predicted = []
- for id_row in range(cfg.number_of_rows):
-
- pixel_filename = _scene_name + '_' + str(id_column) + '_' + str(id_row) + ".dat"
- pixel_file_path = os.path.join(folder_path, pixel_filename)
-
- with open(pixel_file_path, 'r') as f:
- # predict the expected pixel value
- lines = [float(l)/255. for l in f.readlines()]
- pixel_values = lines[0:int(_n)]
- data = compute_feature(_feature_choice, pixel_values)
- pixel_values = np.array(data).reshape(1, (int(_n)))
- # predict pixel per pixel
- pixels_predicted.append(model.predict(pixel_values))
-
- # change normalized predicted value to pixel value
- pixels_predicted = [ val * 255. for val in pixels_predicted]
- for id_pixel, pixel in enumerate(pixels_predicted):
- output_image[id_pixel, id_column] = pixel
- print("{0:.2f}%".format(id_column / cfg.number_of_columns * 100))
- sys.stdout.write("\033[F")
- return output_image
- def main():
- parser = argparse.ArgumentParser(description="Train model and saved it")
- parser.add_argument('--scene', type=str, help='Scene name to reconstruct', choices=cfg.scenes_list)
- parser.add_argument('--model_path', type=str, help='Json model file path')
- parser.add_argument('--n', type=str, help='Number of pixel values approximated to keep')
- parser.add_argument('--feature', type=str, help='Feature choice to compute from samples', choices=cfg.features_list)
- parser.add_argument('--image_name', type=str, help="The ouput image name")
- args = parser.parse_args()
- param_scene_name = args.scene
- param_n = args.n
- param_feature = args.feature
- param_model_path = args.model_path
- param_image_name = args.image_name
- # get default value of `n` param
- if not param_n:
- param_n = param_model_path.split('_')[0]
- output_image = reconstruct(param_scene_name, param_model_path, param_n, param_feature)
- if not os.path.exists(cfg.reconstructed_folder):
- os.makedirs(cfg.reconstructed_folder)
- image_path = os.path.join(cfg.reconstructed_folder, param_image_name)
- img = Image.fromarray(np.uint8(output_image))
- img.save(image_path)
- if __name__== "__main__":
- main()
|