Statistical analysis of sample values to approximate the final pixel value

Jérôme BUISINE 787d73d8f8 Scripts updates 5 anos atrás
modules 787d73d8f8 Scripts updates 5 anos atrás
.gitignore 787d73d8f8 Scripts updates 5 anos atrás
README.md 066fc2b99b Fix folder list issue; Add README; 5 anos atrás
analyse.R 6b7c5d854b First project version; Add of dataset generation; Run script; 5 anos atrás
make_dataset.py 787d73d8f8 Scripts updates 5 anos atrás
reconstruct.py 787d73d8f8 Scripts updates 5 anos atrás
reconstruct_scene_mean.py 787d73d8f8 Scripts updates 5 anos atrás
run.sh 787d73d8f8 Scripts updates 5 anos atrás
train_model.py e3aae73425 Update of run script 5 anos atrás

README.md

Sample Analysis

Description

The aim of this project is to predict the mean pixel value from monte carlo process rendering in synthesis images using only few samples information in input for model.

Data

Data are all scenes samples information obtained during the rendering process.

For each pixel we have a list of all grey value estimated (samples).

Models

List of models tested :

  • Ridge Regression
  • SGD
  • SVR (with rbf kernel)

How to use

First you need to contact jerome.buisine@univ-littoral.fr in order to get datatset version. The dataset is not available with this source code.

python make_dataset.py --n 10 --each_row 8 --each_column 8
python reconstruct.py --scene Scene1 --model_path saved_models/Model1.joblib --n 10 --image_name output.png