run_keras.sh 1.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. # erase "models_info/models_comparisons.csv" file and write new header
  2. file_path='models_info/models_comparisons_keras.csv'
  3. erased=$1
  4. if [ "${erased}" == "Y" ]; then
  5. echo "Previous data file erased..."
  6. rm ${file_path}
  7. mkdir -p models_info
  8. touch ${file_path}
  9. # add of header
  10. echo 'model_name; number_of_approximations; coeff_of_determination; MSE 10 samples; MSE 1000 samples;' >> ${file_path}
  11. fi
  12. for n in {3,4,5,6,7,8,9,10,15,20,25,30}; do
  13. for row in {1,2,3,4,5}; do
  14. for column in {1,2,3,4,5}; do
  15. # Run creation of dataset and train model
  16. DATASET_NAME="data/dataset_${n}_column_${column}_row_${row}.csv"
  17. MODEL_NAME="${n}_column_${column}_row_${row}_KERAS"
  18. IMAGE_RECONSTRUCTED="Sponza1_${n}_${row}_${column}.png"
  19. if ! grep -q "${MODEL_NAME}" "${file_path}"; then
  20. echo "Run computation for model ${MODEL_NAME}"
  21. # Already computed..
  22. #python make_dataset.py --n ${n} --each_row ${row} --each_column ${column}
  23. python train_model_keras.py --data ${DATASET_NAME} --model_name ${MODEL_NAME}
  24. # TODO : Add of reconstruct process for image ?
  25. python reconstruct_keras.py --n ${n} --model_path saved_models/${MODEL_NAME}.json --scene Sponza1 --image_name ${IMAGE_RECONSTRUCTED}
  26. python write_result_keras.py --n ${n} --model_path saved_models/${MODEL_NAME}.json --scene Sponza1 --image_path reconstructed/${IMAGE_RECONSTRUCTED} --data ${DATASET_NAME} --iqa mse &
  27. else
  28. echo "${MODEL_NAME} results already computed.."
  29. fi
  30. done
  31. done
  32. done