123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- # main imports
- import os
- import time
- import numpy as np
- import pickle
- # django imports
- from django.conf import settings
- # module imports
- from ..utils import api
- from ..utils.processing import crop_images
- from .. import config as cfg
- # expe imports
- from .classes.quest_plus import QuestPlus
- from .classes.quest_plus import psychometric_fun
- def run_quest_one_image(request, model_filepath, output_file):
- # 1. get session parameters
- qualities = request.session.get('qualities')
- scene_name = request.session.get('scene')
- expe_name = request.session.get('expe')
- # by default
- iteration = 0
- # used to stop when necessary
- if 'iteration' in request.GET:
- iteration = int(request.GET.get('iteration'))
- else:
- request.session['expe_started'] = False
- # 2. Get expe information if started
- # first time only init `quest`
- # if experiments is started we can save data
- if request.session.get('expe_started'):
- # does not change expe parameters
- if request.session['expe_data']['expe_previous_iteration'] == iteration:
- return None
- else:
- current_expe_data = request.session['expe_data']
- answer = int(request.GET.get('answer'))
- expe_answer_time = time.time() - current_expe_data['expe_answer_time']
- previous_percentage = current_expe_data['expe_percentage']
- previous_orientation = current_expe_data['expe_orientation']
- previous_position = current_expe_data['expe_position']
- previous_stim = current_expe_data['expe_stim']
- print("Answer time is ", expe_answer_time)
- # 3. Load or create Quest instance
- # default params
- # TODO : add specific thresholds information for scene
- thresholds = np.arange(50, 10000, 50)
- stim_space = np.asarray(qualities)
- slopes = np.arange(0.0001, 0.001, 0.00003)
- # check if necessary to construct `quest` object
- if not os.path.exists(model_filepath):
- qp = QuestPlus(stim_space, [thresholds, slopes], function=psychometric_fun)
- else:
- print('Load `qp` model')
- filehandler = open(model_filepath, 'rb')
- qp = pickle.load(filehandler)
-
- # 4. If expe started update and save experiments information and model
- # if experiments is already began
- if request.session.get('expe_started'):
- # TODO : check `i` variable
- # update of `quest`
- # qp.update(qualities[i], answer)
- qp.update(qualities[iteration], answer)
- entropy = qp.get_entropy()
- line = str(previous_stim)
- line += ";" + scene_name
- line += ";" + str(previous_percentage)
- line += ";" + str(previous_orientation)
- line += ";" + str(previous_position)
- line += ";" + str(answer)
- line += ";" + str(expe_answer_time)
- line += ";" + str(entropy)
- line += '\n'
- output_file.write(line)
- output_file.flush()
- # save `quest` model
- file_pi = open(model_filepath, 'wb')
- pickle.dump(qp, file_pi)
- # 5. Contruct new image and save it
- # construct image
- if iteration < cfg.expes_configuration[expe_name]['params']['iterations']:
- # process `quest`
- next_stim = qp.next_contrast()
- print("Next quality ", next_stim)
- # construct new image
- noisy_image = api.get_image(scene_name, next_stim)
- # reconstruct reference image from list stored into session
- ref_image = api.get_image(scene_name, 'max')
- img_merge, percentage, orientation, position = crop_images(noisy_image, ref_image)
- else:
- request.session['expe_finished'] = True
- return None
- # save image using user information
- # create output folder for tmp files if necessary
- tmp_folder = os.path.join(settings.MEDIA_ROOT, cfg.output_tmp_folder)
- if not os.path.exists(tmp_folder):
- os.makedirs(tmp_folder)
- # generate tmp merged image (pass as BytesIO was complicated..)
- filepath_img = os.path.join(tmp_folder, request.session.get('id') + '_' + scene_name + '' + expe_name + '.png')
-
- # replace img_merge if necessary (new iteration of expe)
- if img_merge is not None:
- img_merge.save(filepath_img)
- # 6. Prepare experiments data for current iteration and data for view
-
- # here you can save whatever you need for you experiments
- data_expe = {
- 'image_path': filepath_img,
- 'expe_percentage': percentage,
- 'expe_orientation': orientation,
- 'expe_position': position,
- 'expe_answer_time': time.time(),
- 'expe_previous_iteration': iteration,
- 'expe_stim': str(next_stim)
- }
-
- # expe is now started
- request.session['expe_started'] = True
- return data_expe
|