|
@@ -4,6 +4,7 @@ from ipfml import processing
|
|
def white_noise(image, n, distribution_interval=(-0.5, 0.5), k=0.2):
|
|
def white_noise(image, n, distribution_interval=(-0.5, 0.5), k=0.2):
|
|
"""
|
|
"""
|
|
@brief White noise filter to apply on image
|
|
@brief White noise filter to apply on image
|
|
|
|
+ @param image - image used as input (2D or 3D image representation)
|
|
@param n - used to set importance of noise [1, 999]
|
|
@param n - used to set importance of noise [1, 999]
|
|
@param distribution_interval - set the distribution interval of uniform distribution
|
|
@param distribution_interval - set the distribution interval of uniform distribution
|
|
@param k - variable that specifies the amount of noise to be taken into account in the output image
|
|
@param k - variable that specifies the amount of noise to be taken into account in the output image
|
|
@@ -20,23 +21,49 @@ def white_noise(image, n, distribution_interval=(-0.5, 0.5), k=0.2):
|
|
"""
|
|
"""
|
|
|
|
|
|
image_array = np.asarray(image)
|
|
image_array = np.asarray(image)
|
|
|
|
+ nb_chanel = 1
|
|
|
|
+
|
|
|
|
+ if image_array.ndim != 3:
|
|
|
|
+ width, height = image_array.shape
|
|
|
|
+ else:
|
|
|
|
+ width, height, nb_chanel = image_array.shape
|
|
|
|
|
|
a, b = distribution_interval
|
|
a, b = distribution_interval
|
|
- width, height = image_array.shape
|
|
|
|
nb_pixels = width * height
|
|
nb_pixels = width * height
|
|
|
|
|
|
- # getting flatten information from image and noise
|
|
|
|
- image_array_flatten = image_array.reshape(nb_pixels)
|
|
|
|
- white_noise_filter = np.random.uniform(a, b, nb_pixels)
|
|
|
|
|
|
+ # final output numpy array
|
|
|
|
+ output_array = []
|
|
|
|
+
|
|
|
|
+ for chanel in range(0, nb_chanel):
|
|
|
|
+
|
|
|
|
+ # getting flatten information from image and noise
|
|
|
|
+ if nb_chanel == 3:
|
|
|
|
+ image_array_flatten = image_array[:, :, chanel].reshape(nb_pixels)
|
|
|
|
+ else:
|
|
|
|
+ image_array_flatten = image_array.reshape(nb_pixels)
|
|
|
|
+
|
|
|
|
+ white_noise_filter = np.random.uniform(a, b, nb_pixels)
|
|
|
|
+
|
|
|
|
+ # compute new pixel value
|
|
|
|
+ noisy_image = np.asarray([image_array_flatten[i] + n * k * white_noise_filter[i] for i in range(0, nb_pixels)])
|
|
|
|
+
|
|
|
|
+ # reshape and normalize new value
|
|
|
|
+ noisy_image = noisy_image.reshape((width, height))
|
|
|
|
+
|
|
|
|
+ noisy_image = np.asarray(noisy_image, 'uint8')
|
|
|
|
+
|
|
|
|
+ # in order to concatenae output array
|
|
|
|
+ if nb_chanel == 3:
|
|
|
|
+ noisy_image = noisy_image[:, :, np.newaxis]
|
|
|
|
|
|
- # compute new pixel value
|
|
|
|
- noisy_image = np.asarray([image_array_flatten[i] + n * k * white_noise_filter[i] for i in range(0, nb_pixels)])
|
|
|
|
|
|
+ # append new chanel
|
|
|
|
+ output_array.append(noisy_image)
|
|
|
|
|
|
- # reshape and normalize new value
|
|
|
|
- noisy_image = noisy_image.reshape((width, height))
|
|
|
|
- noisy_image = np.asarray([np.array(processing.normalize_arr_with_range(noisy_image[i, :], 0, 255), 'uint8') for i in range(0, height)])
|
|
|
|
|
|
+ # concatenate RGB image
|
|
|
|
+ if nb_chanel == 3:
|
|
|
|
+ output_array = np.concatenate(output_array, axis=2)
|
|
|
|
|
|
- return noisy_image
|
|
|
|
|
|
+ return np.asarray(output_array)
|
|
|
|
|
|
|
|
|
|
|
|
|