|
@@ -1,410 +0,0 @@
|
|
|
-from PIL import Image
|
|
|
-from matplotlib import cm
|
|
|
-import random
|
|
|
-
|
|
|
-from skimage import color
|
|
|
-import numpy as np
|
|
|
-import ipfml.metrics as metrics
|
|
|
-import cv2
|
|
|
-
|
|
|
-from scipy import signal
|
|
|
-
|
|
|
-def get_LAB_L_SVD(image):
|
|
|
- """
|
|
|
- @brief Returns Singular values from LAB L Image information
|
|
|
- @param fig a matplotlib figure
|
|
|
- @return a Python Imaging Library (PIL) image : default size (480,640,3)
|
|
|
-
|
|
|
- Usage :
|
|
|
-
|
|
|
- >>> from PIL import Image
|
|
|
- >>> from ipfml import image_processing
|
|
|
- >>> img = Image.open('./images/test_img.png')
|
|
|
- >>> U, s, V = image_processing.get_LAB_L_SVD(img)
|
|
|
- >>> U.shape
|
|
|
- (200, 200)
|
|
|
- >>> len(s)
|
|
|
- 200
|
|
|
- >>> V.shape
|
|
|
- (200, 200)
|
|
|
- """
|
|
|
- L = metrics.get_LAB_L(image)
|
|
|
- return metrics.get_SVD(L)
|
|
|
-
|
|
|
-def get_LAB_L_SVD_s(image):
|
|
|
- """
|
|
|
- @brief Returns s (Singular values) SVD from L of LAB Image information
|
|
|
- @param PIL Image
|
|
|
- @return vector of singular values
|
|
|
-
|
|
|
- Usage :
|
|
|
-
|
|
|
- >>> from PIL import Image
|
|
|
- >>> from ipfml import image_processing
|
|
|
- >>> img = Image.open('./images/test_img.png')
|
|
|
- >>> s = image_processing.get_LAB_L_SVD_s(img)
|
|
|
- >>> len(s)
|
|
|
- 200
|
|
|
- """
|
|
|
- L = metrics.get_LAB_L(image)
|
|
|
- return metrics.get_SVD_s(L)
|
|
|
-
|
|
|
-def get_LAB_L_SVD_U(image):
|
|
|
- """
|
|
|
- @brief Returns U SVD from L of LAB Image information
|
|
|
- @param PIL Image
|
|
|
- @return vector of singular values
|
|
|
-
|
|
|
- Usage :
|
|
|
-
|
|
|
- >>> from PIL import Image
|
|
|
- >>> from ipfml import image_processing
|
|
|
- >>> img = Image.open('./images/test_img.png')
|
|
|
- >>> U = image_processing.get_LAB_L_SVD_U(img)
|
|
|
- >>> U.shape
|
|
|
- (200, 200)
|
|
|
- """
|
|
|
- L = metrics.get_LAB_L(image)
|
|
|
- return metrics.get_SVD_U(L)
|
|
|
-
|
|
|
-def get_LAB_L_SVD_V(image):
|
|
|
- """
|
|
|
- @brief Returns V SVD from L of LAB Image information
|
|
|
- @param PIL Image
|
|
|
- @return vector of singular values
|
|
|
-
|
|
|
- Usage :
|
|
|
-
|
|
|
- >>> from PIL import Image
|
|
|
- >>> from ipfml import image_processing
|
|
|
- >>> img = Image.open('./images/test_img.png')
|
|
|
- >>> V = image_processing.get_LAB_L_SVD_V(img)
|
|
|
- >>> V.shape
|
|
|
- (200, 200)
|
|
|
- """
|
|
|
-
|
|
|
- L = metrics.get_LAB_L(image)
|
|
|
- return metrics.get_SVD_V(L)
|
|
|
-
|
|
|
-def divide_in_blocks(image, block_size, pil=True):
|
|
|
- '''
|
|
|
- @brief Divide image into equal size blocks
|
|
|
- @param img - PIL Image or numpy array
|
|
|
- @param block - tuple (width, height) representing the size of each dimension of the block
|
|
|
- @param pil - kind block type (PIL by default or Numpy array)
|
|
|
- @return list containing all 2D numpy blocks (in RGB or not)
|
|
|
-
|
|
|
- Usage :
|
|
|
-
|
|
|
- >>> import numpy as np
|
|
|
- >>> from PIL import Image
|
|
|
- >>> from ipfml import image_processing
|
|
|
- >>> from ipfml import metrics
|
|
|
- >>> image_values = np.random.randint(255, size=(800, 800, 3))
|
|
|
- >>> blocks = divide_in_blocks(image_values, (20, 20))
|
|
|
- >>> len(blocks)
|
|
|
- 1600
|
|
|
- >>> blocks[0].width
|
|
|
- 20
|
|
|
- >>> blocks[0].height
|
|
|
- 20
|
|
|
- >>> img_l = Image.open('./images/test_img.png')
|
|
|
- >>> L = metrics.get_LAB_L(img_l)
|
|
|
- >>> blocks_L = divide_in_blocks(L, (100, 100))
|
|
|
- >>> len(blocks_L)
|
|
|
- 4
|
|
|
- >>> blocks_L[0].width
|
|
|
- 100
|
|
|
- '''
|
|
|
-
|
|
|
- blocks = []
|
|
|
- mode = 'RGB'
|
|
|
-
|
|
|
- # convert in numpy array
|
|
|
- image_array = np.array(image)
|
|
|
-
|
|
|
- # check dimension of input image
|
|
|
- if image_array.ndim != 3:
|
|
|
- mode = 'L'
|
|
|
- image_width, image_height = image_array.shape
|
|
|
- else:
|
|
|
- image_width, image_height, _ = image_array.shape
|
|
|
-
|
|
|
- # check size compatibility
|
|
|
- width, height = block_size
|
|
|
-
|
|
|
- if(image_width % width != 0):
|
|
|
- raise "Width size issue, block size not compatible"
|
|
|
-
|
|
|
- if(image_height % height != 0):
|
|
|
- raise "Height size issue, block size not compatible"
|
|
|
-
|
|
|
- nb_block_width = image_width / width
|
|
|
- nb_block_height = image_height / height
|
|
|
-
|
|
|
- for i in range(int(nb_block_width)):
|
|
|
-
|
|
|
- begin_x = i * width
|
|
|
-
|
|
|
- for j in range(int(nb_block_height)):
|
|
|
-
|
|
|
- begin_y = j * height
|
|
|
-
|
|
|
- # getting sub block information
|
|
|
- current_block = image_array[begin_x:(begin_x + width), begin_y:(begin_y + height)]
|
|
|
-
|
|
|
- if pil:
|
|
|
- blocks.append(Image.fromarray(current_block.astype('uint8'), mode))
|
|
|
- else:
|
|
|
- blocks.append(current_block)
|
|
|
-
|
|
|
- return blocks
|
|
|
-
|
|
|
-
|
|
|
-def normalize_arr(arr):
|
|
|
- '''
|
|
|
- @brief Normalize data of 1D array shape
|
|
|
- @param array - array data of 1D shape
|
|
|
-
|
|
|
- Usage :
|
|
|
-
|
|
|
- >>> from ipfml import image_processing
|
|
|
- >>> import numpy as np
|
|
|
- >>> arr = np.arange(11)
|
|
|
- >>> arr_normalized = image_processing.normalize_arr(arr)
|
|
|
- >>> arr_normalized[1]
|
|
|
- 0.1
|
|
|
- '''
|
|
|
-
|
|
|
- output_arr = []
|
|
|
- max_value = max(arr)
|
|
|
- min_value = min(arr)
|
|
|
-
|
|
|
- for v in arr:
|
|
|
- output_arr.append((v - min_value) / (max_value - min_value))
|
|
|
-
|
|
|
- return output_arr
|
|
|
-
|
|
|
-
|
|
|
-def normalize_arr_with_range(arr, min, max):
|
|
|
- '''
|
|
|
- @brief Normalize data of 1D array shape
|
|
|
- @param array - array data of 1D shape
|
|
|
-
|
|
|
- Usage :
|
|
|
-
|
|
|
- >>> from ipfml import image_processing
|
|
|
- >>> import numpy as np
|
|
|
- >>> arr = np.arange(11)
|
|
|
- >>> arr_normalized = image_processing.normalize_arr_with_range(arr, 0, 20)
|
|
|
- >>> arr_normalized[1]
|
|
|
- 0.05
|
|
|
- '''
|
|
|
-
|
|
|
- output_arr = []
|
|
|
-
|
|
|
- for v in arr:
|
|
|
- output_arr.append((v - min) / (max - min))
|
|
|
-
|
|
|
- return output_arr
|
|
|
-
|
|
|
-def normalize_2D_arr(arr):
|
|
|
- """
|
|
|
- @brief Return array normalize from its min and max values
|
|
|
- @param 2D numpy array
|
|
|
-
|
|
|
- Usage :
|
|
|
-
|
|
|
- >>> from PIL import Image
|
|
|
- >>> from ipfml import image_processing
|
|
|
- >>> img = Image.open('./images/test_img.png')
|
|
|
- >>> img_mscn = image_processing.rgb_to_mscn(img)
|
|
|
- >>> img_normalized = image_processing.normalize_2D_arr(img_mscn)
|
|
|
- >>> img_normalized.shape
|
|
|
- (200, 200)
|
|
|
- """
|
|
|
-
|
|
|
- # getting min and max value from 2D array
|
|
|
- max_value = arr.max(axis=1).max()
|
|
|
- min_value = arr.min(axis=1).min()
|
|
|
-
|
|
|
- # lambda computation to normalize
|
|
|
- g = lambda x : (x - min_value) / (max_value - min_value)
|
|
|
- f = np.vectorize(g)
|
|
|
-
|
|
|
- return f(arr)
|
|
|
-
|
|
|
-def rgb_to_mscn(image):
|
|
|
- """
|
|
|
- @brief Convert RGB Image into Mean Subtracted Contrast Normalized (MSCN)
|
|
|
- @param 3D RGB image numpy array or PIL RGB image
|
|
|
-
|
|
|
- Usage :
|
|
|
-
|
|
|
- >>> from PIL import Image
|
|
|
- >>> from ipfml import image_processing
|
|
|
- >>> img = Image.open('./images/test_img.png')
|
|
|
- >>> img_mscn = image_processing.rgb_to_mscn(img)
|
|
|
- >>> img_mscn.shape
|
|
|
- (200, 200)
|
|
|
- """
|
|
|
-
|
|
|
- # check if PIL image or not
|
|
|
- img_arr = np.array(image)
|
|
|
-
|
|
|
- # convert rgb image to gray
|
|
|
- im = np.array(color.rgb2gray(img_arr)*255, 'uint8')
|
|
|
-
|
|
|
- return metrics.gray_to_mscn(im)
|
|
|
-
|
|
|
-def rgb_to_grey_low_bits(image, bind=15):
|
|
|
- """
|
|
|
- @brief Convert RGB Image into grey image using only 4 low bits values
|
|
|
- @param 3D RGB image numpy array or PIL RGB image
|
|
|
-
|
|
|
- Usage :
|
|
|
-
|
|
|
- >>> from PIL import Image
|
|
|
- >>> from ipfml import image_processing
|
|
|
- >>> img = Image.open('./images/test_img.png')
|
|
|
- >>> low_bits_grey_img = image_processing.rgb_to_grey_low_bits(img)
|
|
|
- >>> low_bits_grey_img.shape
|
|
|
- (200, 200)
|
|
|
- """
|
|
|
-
|
|
|
- img_arr = np.array(image)
|
|
|
- grey_block = np.array(color.rgb2gray(img_arr)*255, 'uint8')
|
|
|
-
|
|
|
- return metrics.get_low_bits_img(grey_block, bind)
|
|
|
-
|
|
|
-def rgb_to_LAB_L_low_bits(image, bind=15):
|
|
|
- """
|
|
|
- @brief Convert RGB Image into Lab L channel image using only 4 low bits values
|
|
|
- @param 3D RGB image numpy array or PIL RGB image
|
|
|
-
|
|
|
- Usage :
|
|
|
-
|
|
|
- >>> from PIL import Image
|
|
|
- >>> from ipfml import image_processing
|
|
|
- >>> img = Image.open('./images/test_img.png')
|
|
|
- >>> low_bits_Lab_l_img = image_processing.rgb_to_LAB_L_low_bits(img)
|
|
|
- >>> low_bits_Lab_l_img.shape
|
|
|
- (200, 200)
|
|
|
- """
|
|
|
-
|
|
|
- L_block = np.asarray(metrics.get_LAB_L(image), 'uint8')
|
|
|
-
|
|
|
- return metrics.get_low_bits_img(L_block, bind)
|
|
|
-
|
|
|
-def rgb_to_LAB_L_bits(image, interval):
|
|
|
- """
|
|
|
- @brief Returns only bits from LAB L canal specified into the interval
|
|
|
- @param image to convert using this interval of bits value to keep
|
|
|
- @param interval (begin, end) of bits values
|
|
|
- @return Numpy array with reduced values
|
|
|
-
|
|
|
- >>> from PIL import Image
|
|
|
- >>> from ipfml import image_processing
|
|
|
- >>> img = Image.open('./images/test_img.png')
|
|
|
- >>> bits_Lab_l_img = image_processing.rgb_to_LAB_L_bits(img)
|
|
|
- >>> bits_Lab_l_img.shape
|
|
|
- (200, 200)
|
|
|
- """
|
|
|
-
|
|
|
- L_block = np.asarray(metrics.get_LAB_L(image), 'uint8')
|
|
|
-
|
|
|
- return metrics.get_bits_img(L_block, interval)
|
|
|
-
|
|
|
-# TODO : Check this method too...
|
|
|
-def get_random_active_block(blocks, threshold = 0.1):
|
|
|
- """
|
|
|
- @brief Find an active block from blocks and return it (randomly way)
|
|
|
- @param 2D numpy array
|
|
|
- @param threshold 0.1 by default
|
|
|
- """
|
|
|
-
|
|
|
- active_blocks = []
|
|
|
-
|
|
|
- for id, block in enumerate(blocks):
|
|
|
-
|
|
|
- arr = np.asarray(block)
|
|
|
- variance = np.var(arr.flatten())
|
|
|
-
|
|
|
- if variance >= threshold:
|
|
|
- active_blocks.append(id)
|
|
|
-
|
|
|
- r_id = random.choice(active_blocks)
|
|
|
-
|
|
|
- return np.asarray(blocks[r_id])
|
|
|
-
|
|
|
-
|
|
|
-# TODO : check this method and check how to use active block
|
|
|
-def segment_relation_in_block(block, active_block):
|
|
|
- """
|
|
|
- @brief Return bêta value to quantity relation between central segment and surrouding regions into block
|
|
|
- @param 2D numpy array
|
|
|
- """
|
|
|
-
|
|
|
- if block.ndim != 2:
|
|
|
- raise "Numpy array dimension is incorrect, expected 2."
|
|
|
-
|
|
|
-
|
|
|
- # getting middle information of numpy array
|
|
|
- x, y = block.shape
|
|
|
-
|
|
|
- if y < 4:
|
|
|
- raise "Block size too small needed at least (x, 4) shape"
|
|
|
-
|
|
|
- middle = int(y / 2)
|
|
|
-
|
|
|
- # get central segments
|
|
|
- central_segments = block[:, middle-1:middle+1]
|
|
|
-
|
|
|
- # getting surrouding parts
|
|
|
- left_part = block[:, 0:middle-1]
|
|
|
- right_part = block[:, middle+1:]
|
|
|
- surrounding_parts = np.concatenate([left_part, right_part])
|
|
|
-
|
|
|
- std_sur = np.std(surrounding_parts.flatten())
|
|
|
- std_cen = np.std(central_segments.flatten())
|
|
|
- std_block = np.std(block.flatten())
|
|
|
-
|
|
|
- std_q = std_cen / std_sur
|
|
|
-
|
|
|
- # from article, it says that block if affected with noise if (std_block > 2 * beta)
|
|
|
- beta = abs(std_q - std_block) / max(std_q, std_block)
|
|
|
-
|
|
|
- return beta
|
|
|
-
|
|
|
-### other way to compute MSCN :
|
|
|
-# TODO : Temp code, check to remove or use it
|
|
|
-
|
|
|
-def normalize_kernel(kernel):
|
|
|
- return kernel / np.sum(kernel)
|
|
|
-
|
|
|
-def gaussian_kernel2d(n, sigma):
|
|
|
- Y, X = np.indices((n, n)) - int(n/2)
|
|
|
- gaussian_kernel = 1 / (2 * np.pi * sigma ** 2) * np.exp(-(X ** 2 + Y ** 2) / (2 * sigma ** 2))
|
|
|
- return normalize_kernel(gaussian_kernel)
|
|
|
-
|
|
|
-def local_mean(image, kernel):
|
|
|
- return signal.convolve2d(image, kernel, 'same')
|
|
|
-
|
|
|
-def local_deviation(image, local_mean, kernel):
|
|
|
- "Vectorized approximation of local deviation"
|
|
|
- sigma = image ** 2
|
|
|
- sigma = signal.convolve2d(sigma, kernel, 'same')
|
|
|
- return np.sqrt(np.abs(local_mean ** 2 - sigma))
|
|
|
-
|
|
|
-def calculate_mscn_coefficients(image, kernel_size=6, sigma=7/6):
|
|
|
-
|
|
|
- # check if PIL image or not
|
|
|
- img_arr = np.array(image)
|
|
|
-
|
|
|
- C = 1/255
|
|
|
- kernel = gaussian_kernel2d(kernel_size, sigma=sigma)
|
|
|
- local_mean = signal.convolve2d(img_arr, kernel, 'same')
|
|
|
- local_var = local_deviation(img_arr, local_mean, kernel)
|
|
|
-
|
|
|
- return (img_arr - local_mean) / (local_var + C)
|
|
|
-
|