Parcourir la source

MSCN implementation first version

Jerome Buisine il y a 6 ans
Parent
commit
78716039c9
4 fichiers modifiés avec 109 ajouts et 20 suppressions
  1. 1 0
      README.md
  2. 1 0
      README.rst
  3. 105 19
      ipfml/image_processing.py
  4. 2 1
      setup.py

+ 1 - 0
README.md

@@ -29,6 +29,7 @@ This project contains modules.
     - divide_in_blocks(image, block_size): *Divide image into equal size blocks*
     - divide_in_blocks(image, block_size): *Divide image into equal size blocks*
     - normalize_arr(arr): *Normalize array values*
     - normalize_arr(arr): *Normalize array values*
     - normalize_arr_with_range(arr, min, max): *Normalize array values with specific min and max values*
     - normalize_arr_with_range(arr, min, max): *Normalize array values with specific min and max values*
+    - rgb_to_mscn(image): *Convert RGB Image into Mean Subtracted Contrast Normalized (MSCN) using only gray level*
 
 
 - **metrics** : *Metrics computation of PIL image*
 - **metrics** : *Metrics computation of PIL image*
     - get_SVD(image): *Transforms PIL Image into SVD*
     - get_SVD(image): *Transforms PIL Image into SVD*

+ 1 - 0
README.rst

@@ -28,6 +28,7 @@ This project contains modules.
     - divide_in_blocks(image, block_size): Divide image into equal size blocks
     - divide_in_blocks(image, block_size): Divide image into equal size blocks
     - normalize_arr(arr): *Normalize array values*
     - normalize_arr(arr): *Normalize array values*
     - normalize_arr_with_range(arr, min, max): *Normalize array values with specific min and max values*
     - normalize_arr_with_range(arr, min, max): *Normalize array values with specific min and max values*
+    - rgb_to_mscn(image): *Convert RGB Image into Mean Subtracted Contrast Normalized (MSCN) using only gray level*
 
 
 - **metrics** : *Metrics computation of PIL image*
 - **metrics** : *Metrics computation of PIL image*
     - get_SVD(image): *Transforms PIL Image into SVD*
     - get_SVD(image): *Transforms PIL Image into SVD*

+ 105 - 19
ipfml/image_processing.py

@@ -1,11 +1,13 @@
 from PIL import Image
 from PIL import Image
 from matplotlib import cm
 from matplotlib import cm
+import random
 
 
 from skimage import color
 from skimage import color
 import numpy as np
 import numpy as np
 import ipfml.metrics as metrics
 import ipfml.metrics as metrics
 import cv2
 import cv2
 
 
+from scipy import signal
 
 
 def fig2data(fig):
 def fig2data(fig):
     """
     """
@@ -113,12 +115,13 @@ def get_LAB_L_SVD_V(image):
     L = metrics.get_LAB_L(image)
     L = metrics.get_LAB_L(image)
     return metrics.get_SVD_V(L)
     return metrics.get_SVD_V(L)
 
 
-def divide_in_blocks(image, block_size):
+def divide_in_blocks(image, block_size, pil=True):
     '''
     '''
     @brief Divide image into equal size blocks
     @brief Divide image into equal size blocks
     @param img - PIL Image or numpy array
     @param img - PIL Image or numpy array
     @param block - tuple (width, height) representing the size of each dimension of the block
     @param block - tuple (width, height) representing the size of each dimension of the block
-    @return list containing all PIL Image block (in RGB)
+    @param pil - kind block type (PIL by default or Numpy array)
+    @return list containing all 2D numpy blocks (in RGB or not)
 
 
     Usage :
     Usage :
 
 
@@ -127,7 +130,7 @@ def divide_in_blocks(image, block_size):
     >>> from ipfml import image_processing
     >>> from ipfml import image_processing
     >>> from ipfml import metrics
     >>> from ipfml import metrics
     >>> image_values = np.random.randint(255, size=(800, 800, 3))
     >>> image_values = np.random.randint(255, size=(800, 800, 3))
-    >>> blocks = divide_in_blocks(image_values, (20, 20))
+    >>> blocks = divide_img_in_blocks(image_values, (20, 20))
     >>> len(blocks)
     >>> len(blocks)
     1600
     1600
     >>> blocks[0].width
     >>> blocks[0].width
@@ -181,7 +184,11 @@ def divide_in_blocks(image, block_size):
 
 
             # getting sub block information
             # getting sub block information
             current_block = image_array[begin_x:(begin_x + width), begin_y:(begin_y + height)]
             current_block = image_array[begin_x:(begin_x + width), begin_y:(begin_y + height)]
-            blocks.append(Image.fromarray(current_block.astype('uint8'), mode))
+
+            if pil:
+                blocks.append(Image.fromarray(current_block.astype('uint8'), mode))
+            else:
+                blocks.append(current_block)
 
 
     return blocks
     return blocks
 
 
@@ -234,6 +241,7 @@ def normalize_arr_with_range(arr, min, max):
     return output_arr
     return output_arr
 
 
 
 
+# TODO : add test to this method
 def rgb_to_mscn(image):
 def rgb_to_mscn(image):
     """
     """
     @brief Convert RGB Image into Mean Subtracted Contrast Normalized (MSCN)
     @brief Convert RGB Image into Mean Subtracted Contrast Normalized (MSCN)
@@ -241,26 +249,48 @@ def rgb_to_mscn(image):
     """
     """
 
 
     # check if PIL image or not
     # check if PIL image or not
-    if hasattr(image, 'filename'):
-        img_arr = np.array(image)
-    else:
-        img_arr = image
-    
+    img_arr = np.array(image)
+
+    # convert rgb image to gray
     im = np.array(color.rgb2gray(img_arr)*255, 'uint8')
     im = np.array(color.rgb2gray(img_arr)*255, 'uint8')
-    #im = cv2.imread(image.filename, 0) # read as gray scale
-    blurred = cv2.GaussianBlur(im, (-3, 3), 1.166) # apply gaussian blur to the image
+
+    s = 7/6
+    blurred = cv2.GaussianBlur(im, (7, 7), s) # apply gaussian blur to the image
     blurred_sq = blurred * blurred 
     blurred_sq = blurred * blurred 
-    sigma = cv2.GaussianBlur(im * im, (-3, 3), 1.166)  # switch to -3, 3 (7, 7) before..
-    sigma = (sigma - blurred_sq) ** 0.5
+    sigma = cv2.GaussianBlur(im * im, (7, 7), s)  # switch to -3, 3 (7, 7) before..
+    sigma = abs(sigma - blurred_sq) ** 0.5
     sigma = sigma + 1.0/255 # to make sure the denominator doesn't give DivideByZero Exception
     sigma = sigma + 1.0/255 # to make sure the denominator doesn't give DivideByZero Exception
     structdis = (im - blurred)/sigma # final MSCN(i, j) image
     structdis = (im - blurred)/sigma # final MSCN(i, j) image
 
 
     return structdis
     return structdis
 
 
+# TODO : Check this method too...
+def get_random_active_block(blocks, threshold = 0.1):
+    """
+    @brief Find an active block from blocks and return it (randomly way)
+    @param 2D numpy array
+    @param threshold 0.1 by default
+    """
+
+    active_blocks = []
+
+    for id, block in enumerate(blocks):
+
+        arr = np.asarray(block)
+        variance = np.var(arr.flatten())
+
+        if variance >= threshold:
+            active_blocks.append(id)
+
+    r_id = random.choice(active_blocks)
 
 
-def segment_relation_in_block(block):   
+    return np.asarray(blocks[r_id])
+
+
+# TODO : check this method and check how to use active block
+def segment_relation_in_block(block, active_block):   
     """
     """
-    @brief Return betâ value to quantity relation between central segment and surrouding regions into block
+    @brief Return bêta value to quantity relation between central segment and surrouding regions into block
     @param 2D numpy array
     @param 2D numpy array
     """
     """
 
 
@@ -275,7 +305,6 @@ def segment_relation_in_block(block):
         raise "Block size too small needed at least (x, 4) shape"
         raise "Block size too small needed at least (x, 4) shape"
 
 
     middle = int(y / 2)
     middle = int(y / 2)
-    print(middle)
 
 
     # get central segments
     # get central segments
     central_segments = block[:, middle-1:middle+1]
     central_segments = block[:, middle-1:middle+1]
@@ -285,9 +314,13 @@ def segment_relation_in_block(block):
     right_part = block[:, middle+1:]
     right_part = block[:, middle+1:]
     surrounding_parts = np.concatenate([left_part, right_part])
     surrounding_parts = np.concatenate([left_part, right_part])
 
 
-    std_cen = np.std(np.sort(central_segments.flatten()))
-    std_sur = np.std(np.sort(surrounding_parts.flatten()))
-    std_block = np.std(np.sort(block.flatten()))
+    std_sur = np.std(surrounding_parts.flatten())
+    std_cen = np.std(central_segments.flatten())
+    std_block = np.std(block.flatten())
+
+    print("CEN " + str(std_cen))
+    print("SUR " + str(std_sur))
+    print("BLOCK " + str(std_block))
 
 
     std_q = std_cen / std_sur
     std_q = std_cen / std_sur
 
 
@@ -296,3 +329,56 @@ def segment_relation_in_block(block):
 
 
     return beta
     return beta
 
 
+def normalize_2D_arr(arr):
+    """
+    @brief Return array normalize from its min and max values
+    @param 2D numpy array
+    """
+
+    # getting min and max value from 2D array
+    max_value = arr.max(axis=1).max()
+    min_value = arr.min(axis=1).min()
+    
+    # lambda computation to normalize
+    g = lambda x : (x - min_value) / (max_value - min_value)
+    f = np.vectorize(g)
+    
+    return f(arr)
+
+
+### other way to compute MSCN :
+# TODO : Temp code, check to remove or use it
+
+def normalize_kernel(kernel):
+    return kernel / np.sum(kernel)
+
+def gaussian_kernel2d(n, sigma):
+    Y, X = np.indices((n, n)) - int(n/2)
+    gaussian_kernel = 1 / (2 * np.pi * sigma ** 2) * np.exp(-(X ** 2 + Y ** 2) / (2 * sigma ** 2)) 
+    return normalize_kernel(gaussian_kernel)
+
+def local_mean(image, kernel):
+    return signal.convolve2d(image, kernel, 'same')
+
+def local_deviation(image, local_mean, kernel):
+    "Vectorized approximation of local deviation"
+    sigma = image ** 2
+    sigma = signal.convolve2d(sigma, kernel, 'same')
+    return np.sqrt(np.abs(local_mean ** 2 - sigma))
+
+def calculate_mscn_coefficients(image, kernel_size=6, sigma=7/6):
+
+    # check if PIL image or not
+    img_arr = np.array(image)
+
+    #im = np.array(color.rgb2gray(img_arr)*255, 'uint8')
+    #im = np.asarray(cv2.imread(image.filename, 0)) # read as gray scale
+    print(img_arr.shape)
+
+    C = 1/255
+    kernel = gaussian_kernel2d(kernel_size, sigma=sigma)
+    local_mean = signal.convolve2d(img_arr, kernel, 'same')
+    local_var = local_deviation(img_arr, local_mean, kernel)
+    
+    return (img_arr - local_mean) / (local_var + C)
+

+ 2 - 1
setup.py

@@ -44,7 +44,8 @@ setup(name='IPFML',
           'sklearn',
           'sklearn',
           'scikit-image',
           'scikit-image',
           'scipy',
           'scipy',
-          'opencv-python'
+          'opencv-python',
+          'scipy'
       ],
       ],
       cmdclass={
       cmdclass={
         'build_py': BuildTestCommand,
         'build_py': BuildTestCommand,