|
@@ -1,21 +1,22 @@
|
|
|
import numpy as np
|
|
|
from ipfml import processing
|
|
|
|
|
|
-def white_noise(image, n, distribution_interval=(-0.5, 0.5), k=0.2):
|
|
|
+def __global_noise_filter(image, n, random_function, identical=False, distribution_interval=(-0.5, 0.5), k=0.2):
|
|
|
"""
|
|
|
@brief White noise filter to apply on image
|
|
|
@param image - image used as input (2D or 3D image representation)
|
|
|
@param n - used to set importance of noise [1, 999]
|
|
|
+ @param random_function - random function we want to use to generate random numpy array
|
|
|
@param distribution_interval - set the distribution interval of uniform distribution
|
|
|
@param k - variable that specifies the amount of noise to be taken into account in the output image
|
|
|
- @return Image with white noise applied
|
|
|
+ @return Image with specified noise applied
|
|
|
|
|
|
Usage :
|
|
|
|
|
|
- >>> from ipfml.filters.noise import white_noise
|
|
|
+ >>> from ipfml.filters.noise import global_noise_filter
|
|
|
>>> import numpy as np
|
|
|
>>> image = np.random.uniform(0, 255, 10000).reshape((100, 100))
|
|
|
- >>> noisy_image = white_noise(image, 10)
|
|
|
+ >>> noisy_image = global_noise_filter(image, 10, np.random.uniform)
|
|
|
>>> noisy_image.shape
|
|
|
(100, 100)
|
|
|
"""
|
|
@@ -31,6 +32,9 @@ def white_noise(image, n, distribution_interval=(-0.5, 0.5), k=0.2):
|
|
|
a, b = distribution_interval
|
|
|
nb_pixels = width * height
|
|
|
|
|
|
+ if identical:
|
|
|
+ noise_filter = random_function(a, b, nb_pixels)
|
|
|
+
|
|
|
# final output numpy array
|
|
|
output_array = []
|
|
|
|
|
@@ -42,10 +46,13 @@ def white_noise(image, n, distribution_interval=(-0.5, 0.5), k=0.2):
|
|
|
else:
|
|
|
image_array_flatten = image_array.reshape(nb_pixels)
|
|
|
|
|
|
- white_noise_filter = np.random.uniform(a, b, nb_pixels)
|
|
|
+ # redefine noise if necessary
|
|
|
+ if not identical:
|
|
|
+ noise_filter = random_function(a, b, nb_pixels)
|
|
|
|
|
|
# compute new pixel value
|
|
|
- noisy_image = np.asarray([image_array_flatten[i] + n * k * white_noise_filter[i] for i in range(0, nb_pixels)])
|
|
|
+ # n * k * white_noise_filter[i]
|
|
|
+ noisy_image = np.asarray([image_array_flatten[i] + n * k * noise_filter[i] for i in range(0, nb_pixels)])
|
|
|
|
|
|
# reshape and normalize new value
|
|
|
noisy_image = noisy_image.reshape((width, height))
|
|
@@ -66,6 +73,72 @@ def white_noise(image, n, distribution_interval=(-0.5, 0.5), k=0.2):
|
|
|
return np.asarray(output_array)
|
|
|
|
|
|
|
|
|
+def white_noise(image, n, identical=False, distribution_interval=(-0.5, 0.5), k=0.2):
|
|
|
+ """
|
|
|
+ @brief White noise filter to apply on image
|
|
|
+ @param image - image used as input (2D or 3D image representation)
|
|
|
+ @param n - used to set importance of noise [1, 999]
|
|
|
+ @param distribution_interval - set the distribution interval of normal law distribution
|
|
|
+ @param k - variable that specifies the amount of noise to be taken into account in the output image
|
|
|
+ @return Image with white noise applied
|
|
|
+
|
|
|
+ Usage :
|
|
|
+
|
|
|
+ >>> from ipfml.filters.noise import white_noise
|
|
|
+ >>> import numpy as np
|
|
|
+ >>> image = np.random.uniform(0, 255, 10000).reshape((100, 100))
|
|
|
+ >>> noisy_image = white_noise(image, 10)
|
|
|
+ >>> noisy_image.shape
|
|
|
+ (100, 100)
|
|
|
+ """
|
|
|
+
|
|
|
+ return __global_noise_filter(image, n, np.random.uniform, identical, distribution_interval, k)
|
|
|
+
|
|
|
+
|
|
|
+def gaussian_noise(image, n, identical=False, distribution_interval=(0, 1), k=0.1):
|
|
|
+ """
|
|
|
+ @brief Gaussian noise filter to apply on image
|
|
|
+ @param image - image used as input (2D or 3D image representation)
|
|
|
+ @param n - used to set importance of noise [1, 999]
|
|
|
+ @param distribution_interval - set the distribution interval of normal law distribution
|
|
|
+ @param k - variable that specifies the amount of noise to be taken into account in the output image
|
|
|
+ @return Image with gaussian noise applied
|
|
|
+
|
|
|
+ Usage :
|
|
|
+
|
|
|
+ >>> from ipfml.filters.noise import gaussian_noise
|
|
|
+ >>> import numpy as np
|
|
|
+ >>> image = np.random.uniform(0, 255, 10000).reshape((100, 100))
|
|
|
+ >>> noisy_image = gaussian_noise(image, 10)
|
|
|
+ >>> noisy_image.shape
|
|
|
+ (100, 100)
|
|
|
+ """
|
|
|
+
|
|
|
+ return __global_noise_filter(image, n, np.random.normal, identical, distribution_interval, k)
|
|
|
+
|
|
|
+
|
|
|
+def laplace_noise(image, n, identical=False, distribution_interval=(0, 1), k=0.1):
|
|
|
+ """
|
|
|
+ @brief Laplace noise filter to apply on image
|
|
|
+ @param image - image used as input (2D or 3D image representation)
|
|
|
+ @param n - used to set importance of noise [1, 999]
|
|
|
+ @param distribution_interval - set the distribution interval of normal law distribution
|
|
|
+ @param k - variable that specifies the amount of noise to be taken into account in the output image
|
|
|
+ @return Image with Laplace noise applied
|
|
|
+
|
|
|
+ Usage :
|
|
|
+
|
|
|
+ >>> from ipfml.filters.noise import gaussian_noise
|
|
|
+ >>> import numpy as np
|
|
|
+ >>> image = np.random.uniform(0, 255, 10000).reshape((100, 100))
|
|
|
+ >>> noisy_image = gaussian_noise(image, 10)
|
|
|
+ >>> noisy_image.shape
|
|
|
+ (100, 100)
|
|
|
+ """
|
|
|
+
|
|
|
+ return __global_noise_filter(image, n, np.random.laplace, identical, distribution_interval, k)
|
|
|
+
|
|
|
+
|
|
|
|
|
|
|
|
|
|