123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417 |
- <!DOCTYPE html>
- <!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
- <!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
- <head>
- <meta charset="utf-8">
-
- <meta name="viewport" content="width=device-width, initial-scale=1.0">
-
- <title>ipfml.filters — IPFML v0.1.9 documentation</title>
-
-
-
-
-
-
-
-
-
-
- <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
- <link rel="index" title="Index" href="genindex.html" />
- <link rel="search" title="Search" href="search.html" />
- <link rel="prev" title="ipfml" href="ipfml.html" />
-
- <script src="_static/js/modernizr.min.js"></script>
- </head>
- <body class="wy-body-for-nav">
-
- <div class="wy-grid-for-nav">
-
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search">
-
-
- <a href="index.html" class="icon icon-home"> IPFML
-
-
- </a>
-
-
-
- <div class="version">
- 0.1.9
- </div>
-
-
-
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
-
- </div>
- <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
-
-
-
-
-
-
- <ul class="current">
- <li class="toctree-l1"><a class="reference internal" href="description.html">Description</a></li>
- <li class="toctree-l1"><a class="reference internal" href="ipfml.html">ipfml</a></li>
- <li class="toctree-l1 current"><a class="current reference internal" href="#">ipfml.filters</a><ul>
- <li class="toctree-l2"><a class="reference internal" href="#module-ipfml.filters.noise">ipfml.filters.noise</a></li>
- </ul>
- </li>
- </ul>
-
-
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
-
- <nav class="wy-nav-top" aria-label="top navigation">
-
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="index.html">IPFML</a>
-
- </nav>
- <div class="wy-nav-content">
-
- <div class="rst-content">
-
-
- <div role="navigation" aria-label="breadcrumbs navigation">
- <ul class="wy-breadcrumbs">
-
- <li><a href="index.html">Docs</a> »</li>
-
- <li>ipfml.filters</li>
-
-
- <li class="wy-breadcrumbs-aside">
-
-
- <a href="_sources/ipfml.filters.rst.txt" rel="nofollow"> View page source</a>
-
-
- </li>
-
- </ul>
-
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <div class="section" id="ipfml-filters">
- <h1>ipfml.filters<a class="headerlink" href="#ipfml-filters" title="Permalink to this headline">¶</a></h1>
- <div class="section" id="module-ipfml.filters.noise">
- <span id="ipfml-filters-noise"></span><h2>ipfml.filters.noise<a class="headerlink" href="#module-ipfml.filters.noise" title="Permalink to this headline">¶</a></h2>
- <dl class="function">
- <dt id="ipfml.filters.noise.cauchy_noise">
- <code class="descclassname">ipfml.filters.noise.</code><code class="descname">cauchy_noise</code><span class="sig-paren">(</span><em>image</em>, <em>n</em>, <em>identical=False</em>, <em>distribution_interval=(0</em>, <em>1)</em>, <em>k=0.0002</em><span class="sig-paren">)</span><a class="headerlink" href="#ipfml.filters.noise.cauchy_noise" title="Permalink to this definition">¶</a></dt>
- <dd><p>Cauchy noise filter to apply on image</p>
- <table class="docutils field-list" frame="void" rules="none">
- <col class="field-name" />
- <col class="field-body" />
- <tbody valign="top">
- <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
- <li><strong>image</strong> – image used as input (2D or 3D image representation)</li>
- <li><strong>n</strong> – used to set importance of noise [1, 999]</li>
- <li><strong>identical</strong> – keep or not identical noise distribution for each canal if RGB Image (default False)</li>
- <li><strong>distribution_interval</strong> – set the distribution interval of normal law distribution (default (0, 1))</li>
- <li><strong>k</strong> – variable that specifies the amount of noise to be taken into account in the output image (default 0.0002)</li>
- </ul>
- </td>
- </tr>
- <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">2D Numpy array with Cauchy noise applied</p>
- </td>
- </tr>
- </tbody>
- </table>
- <p>Example:</p>
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">ipfml.filters.noise</span> <span class="k">import</span> <span class="n">cauchy_noise</span>
- <span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="gp">>>> </span><span class="n">image</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">10000</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="mi">100</span><span class="p">,</span> <span class="mi">100</span><span class="p">))</span>
- <span class="gp">>>> </span><span class="n">noisy_image</span> <span class="o">=</span> <span class="n">cauchy_noise</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
- <span class="gp">>>> </span><span class="n">noisy_image</span><span class="o">.</span><span class="n">shape</span>
- <span class="go">(100, 100)</span>
- </pre></div>
- </div>
- </dd></dl>
- <dl class="function">
- <dt id="ipfml.filters.noise.gaussian_noise">
- <code class="descclassname">ipfml.filters.noise.</code><code class="descname">gaussian_noise</code><span class="sig-paren">(</span><em>image</em>, <em>n</em>, <em>identical=False</em>, <em>distribution_interval=(0</em>, <em>1)</em>, <em>k=0.1</em><span class="sig-paren">)</span><a class="headerlink" href="#ipfml.filters.noise.gaussian_noise" title="Permalink to this definition">¶</a></dt>
- <dd><p>Gaussian noise filter to apply on image</p>
- <table class="docutils field-list" frame="void" rules="none">
- <col class="field-name" />
- <col class="field-body" />
- <tbody valign="top">
- <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
- <li><strong>image</strong> – image used as input (2D or 3D image representation)</li>
- <li><strong>n</strong> – used to set importance of noise [1, 999]</li>
- <li><strong>identical</strong> – keep or not identical noise distribution for each canal if RGB Image (default False)</li>
- <li><strong>distribution_interval</strong> – set the distribution interval of normal law distribution (default (0, 1))</li>
- <li><strong>k</strong> – variable that specifies the amount of noise to be taken into account in the output image (default 0.1)</li>
- </ul>
- </td>
- </tr>
- <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">2D Numpy array with gaussian noise applied</p>
- </td>
- </tr>
- </tbody>
- </table>
- <p>Example:</p>
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">ipfml.filters.noise</span> <span class="k">import</span> <span class="n">gaussian_noise</span>
- <span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="gp">>>> </span><span class="n">image</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">10000</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="mi">100</span><span class="p">,</span> <span class="mi">100</span><span class="p">))</span>
- <span class="gp">>>> </span><span class="n">noisy_image</span> <span class="o">=</span> <span class="n">gaussian_noise</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
- <span class="gp">>>> </span><span class="n">noisy_image</span><span class="o">.</span><span class="n">shape</span>
- <span class="go">(100, 100)</span>
- </pre></div>
- </div>
- </dd></dl>
- <dl class="function">
- <dt id="ipfml.filters.noise.laplace_noise">
- <code class="descclassname">ipfml.filters.noise.</code><code class="descname">laplace_noise</code><span class="sig-paren">(</span><em>image</em>, <em>n</em>, <em>identical=False</em>, <em>distribution_interval=(0</em>, <em>1)</em>, <em>k=0.1</em><span class="sig-paren">)</span><a class="headerlink" href="#ipfml.filters.noise.laplace_noise" title="Permalink to this definition">¶</a></dt>
- <dd><p>Laplace noise filter to apply on image</p>
- <table class="docutils field-list" frame="void" rules="none">
- <col class="field-name" />
- <col class="field-body" />
- <tbody valign="top">
- <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
- <li><strong>image</strong> – image used as input (2D or 3D image representation)</li>
- <li><strong>n</strong> – used to set importance of noise [1, 999]</li>
- <li><strong>identical</strong> – keep or not identical noise distribution for each canal if RGB Image (default False)</li>
- <li><strong>distribution_interval</strong> – set the distribution interval of normal law distribution (default (0, 1))</li>
- <li><strong>k</strong> – variable that specifies the amount of noise to be taken into account in the output image (default 0.1)</li>
- </ul>
- </td>
- </tr>
- <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">2D Numpay array with Laplace noise applied</p>
- </td>
- </tr>
- </tbody>
- </table>
- <p>Example:</p>
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">ipfml.filters.noise</span> <span class="k">import</span> <span class="n">laplace_noise</span>
- <span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="gp">>>> </span><span class="n">image</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">10000</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="mi">100</span><span class="p">,</span> <span class="mi">100</span><span class="p">))</span>
- <span class="gp">>>> </span><span class="n">noisy_image</span> <span class="o">=</span> <span class="n">laplace_noise</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
- <span class="gp">>>> </span><span class="n">noisy_image</span><span class="o">.</span><span class="n">shape</span>
- <span class="go">(100, 100)</span>
- </pre></div>
- </div>
- </dd></dl>
- <dl class="function">
- <dt id="ipfml.filters.noise.log_normal_noise">
- <code class="descclassname">ipfml.filters.noise.</code><code class="descname">log_normal_noise</code><span class="sig-paren">(</span><em>image</em>, <em>n</em>, <em>identical=False</em>, <em>distribution_interval=(0</em>, <em>1)</em>, <em>k=0.05</em><span class="sig-paren">)</span><a class="headerlink" href="#ipfml.filters.noise.log_normal_noise" title="Permalink to this definition">¶</a></dt>
- <dd><p>Log-normal noise filter to apply on image</p>
- <table class="docutils field-list" frame="void" rules="none">
- <col class="field-name" />
- <col class="field-body" />
- <tbody valign="top">
- <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
- <li><strong>image</strong> – image used as input (2D or 3D image representation)</li>
- <li><strong>n</strong> – used to set importance of noise [1, 999]</li>
- <li><strong>identical</strong> – keep or not identical noise distribution for each canal if RGB Image (default False)</li>
- <li><strong>distribution_interval</strong> – set the distribution interval of normal law distribution (default (0, 1))</li>
- <li><strong>k</strong> – variable that specifies the amount of noise to be taken into account in the output image (default 0.05)</li>
- </ul>
- </td>
- </tr>
- <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">2D Numpy array with Log-normal noise applied</p>
- </td>
- </tr>
- </tbody>
- </table>
- <p>Example:</p>
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">ipfml.filters.noise</span> <span class="k">import</span> <span class="n">log_normal_noise</span>
- <span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="gp">>>> </span><span class="n">image</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">10000</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="mi">100</span><span class="p">,</span> <span class="mi">100</span><span class="p">))</span>
- <span class="gp">>>> </span><span class="n">noisy_image</span> <span class="o">=</span> <span class="n">log_normal_noise</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
- <span class="gp">>>> </span><span class="n">noisy_image</span><span class="o">.</span><span class="n">shape</span>
- <span class="go">(100, 100)</span>
- </pre></div>
- </div>
- </dd></dl>
- <dl class="function">
- <dt id="ipfml.filters.noise.mut_white_noise">
- <code class="descclassname">ipfml.filters.noise.</code><code class="descname">mut_white_noise</code><span class="sig-paren">(</span><em>image</em>, <em>n</em>, <em>identical=False</em>, <em>distribution_interval=(-0.5</em>, <em>0.5)</em>, <em>k=0.2</em><span class="sig-paren">)</span><a class="headerlink" href="#ipfml.filters.noise.mut_white_noise" title="Permalink to this definition">¶</a></dt>
- <dd><p>Multiplied White noise filter to apply on image</p>
- <table class="docutils field-list" frame="void" rules="none">
- <col class="field-name" />
- <col class="field-body" />
- <tbody valign="top">
- <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
- <li><strong>image</strong> – image used as input (2D or 3D image representation)</li>
- <li><strong>n</strong> – used to set importance of noise [1, 999]</li>
- <li><strong>identical</strong> – keep or not identical noise distribution for each canal if RGB Image (default False)</li>
- <li><strong>distribution_interval</strong> – set the distribution interval of normal law distribution (default (-0.5, 0.5))</li>
- <li><strong>k</strong> – variable that specifies the amount of noise to be taken into account in the output image (default 0.2)</li>
- </ul>
- </td>
- </tr>
- <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">2D Numpy array with multiplied white noise applied</p>
- </td>
- </tr>
- </tbody>
- </table>
- <p>Example:</p>
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">ipfml.filters.noise</span> <span class="k">import</span> <span class="n">mut_white_noise</span>
- <span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="gp">>>> </span><span class="n">image</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">10000</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="mi">100</span><span class="p">,</span> <span class="mi">100</span><span class="p">))</span>
- <span class="gp">>>> </span><span class="n">noisy_image</span> <span class="o">=</span> <span class="n">mut_white_noise</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
- <span class="gp">>>> </span><span class="n">noisy_image</span><span class="o">.</span><span class="n">shape</span>
- <span class="go">(100, 100)</span>
- </pre></div>
- </div>
- </dd></dl>
- <dl class="function">
- <dt id="ipfml.filters.noise.white_noise">
- <code class="descclassname">ipfml.filters.noise.</code><code class="descname">white_noise</code><span class="sig-paren">(</span><em>image</em>, <em>n</em>, <em>identical=False</em>, <em>distribution_interval=(-0.5</em>, <em>0.5)</em>, <em>k=0.2</em><span class="sig-paren">)</span><a class="headerlink" href="#ipfml.filters.noise.white_noise" title="Permalink to this definition">¶</a></dt>
- <dd><p>White noise filter to apply on image</p>
- <table class="docutils field-list" frame="void" rules="none">
- <col class="field-name" />
- <col class="field-body" />
- <tbody valign="top">
- <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
- <li><strong>image</strong> – image used as input (2D or 3D image representation)</li>
- <li><strong>n</strong> – used to set importance of noise [1, 999]</li>
- <li><strong>identical</strong> – keep or not identical noise distribution for each canal if RGB Image (default False)</li>
- <li><strong>distribution_interval</strong> – set the distribution interval of normal law distribution (default (-0.5, 0.5))</li>
- <li><strong>k</strong> – variable that specifies the amount of noise to be taken into account in the output image (default 0.2)</li>
- </ul>
- </td>
- </tr>
- <tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">2D Numpy array with white noise applied</p>
- </td>
- </tr>
- </tbody>
- </table>
- <p>Example:</p>
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">ipfml.filters.noise</span> <span class="k">import</span> <span class="n">white_noise</span>
- <span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="gp">>>> </span><span class="n">image</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">255</span><span class="p">,</span> <span class="mi">10000</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="mi">100</span><span class="p">,</span> <span class="mi">100</span><span class="p">))</span>
- <span class="gp">>>> </span><span class="n">noisy_image</span> <span class="o">=</span> <span class="n">white_noise</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
- <span class="gp">>>> </span><span class="n">noisy_image</span><span class="o">.</span><span class="n">shape</span>
- <span class="go">(100, 100)</span>
- </pre></div>
- </div>
- </dd></dl>
- </div>
- </div>
- </div>
-
- </div>
- <footer>
-
- <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
-
-
- <a href="ipfml.html" class="btn btn-neutral" title="ipfml" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
-
- </div>
-
- <hr/>
- <div role="contentinfo">
- <p>
- © Copyright 2019, Jérôme BUISINE
- </p>
- </div>
- Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
- </footer>
- </div>
- </div>
- </section>
- </div>
-
-
-
-
- <script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
- <script type="text/javascript" src="_static/jquery.js"></script>
- <script type="text/javascript" src="_static/underscore.js"></script>
- <script type="text/javascript" src="_static/doctools.js"></script>
- <script type="text/javascript" src="_static/language_data.js"></script>
-
-
- <script type="text/javascript" src="_static/js/theme.js"></script>
- <script type="text/javascript">
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|