Image Processing For Machine Learning python Package https://pypi.org/project/IPFML/

Jerome Buisine 64e90944f1 Add of utils normalization methods vor 6 Jahren
images 420f833455 Add of metrics tests vor 6 Jahren
ipfml 64e90944f1 Add of utils normalization methods vor 6 Jahren
.gitignore 433801fdfb Initial commit vor 6 Jahren
.python-version d338201ddc First functions added vor 6 Jahren
LICENSE 433801fdfb Initial commit vor 6 Jahren
MANIFEST.in 420f833455 Add of metrics tests vor 6 Jahren
README.md 64e90944f1 Add of utils normalization methods vor 6 Jahren
README.rst 139508ebd7 Update of image_processing divide_in_block function vor 6 Jahren
example.py 139508ebd7 Update of image_processing divide_in_block function vor 6 Jahren
setup.py 64e90944f1 Add of utils normalization methods vor 6 Jahren

README.md

IPFML

Image Processing For Machine Learning package.

How to use ?

To use, simply do :

from PIL import Image
from ipfml import image_processing
img = Image.open('path/to/image.png')
s = image_processing.get_LAB_L_SVD_s(img)

Modules

This project contains modules.

  • img_processing : PIL image processing part

    • fig2data(fig): Convert a Matplotlib figure to a 3D numpy array with RGB channels and return it
    • fig2img(fig): Convert a Matplotlib figure to a PIL Image in RGB format and return it
    • get_LAB_L_SVD_U(image): Returns U SVD from L of LAB Image information
    • get_LAB_L_SVD_s(image): Returns s (Singular values) SVD from L of LAB Image information
    • get_LAB_L_SVD_V(image): Returns V SVD from L of LAB Image information
    • divide_in_blocks(image, block_size): Divide image into equal size blocks
    • normalize_arr(arr): Normalize array values
    • normalize_arr_with_range(arr, min, max): Normalize array values with specific min and max values
  • metrics : Metrics computation of PIL image

    • get_SVD(image): Transforms PIL Image into SVD
    • get_SVD_U(image): Transforms PIL Image into SVD and returns only 'U' part
    • get_SVD_s(image): Transforms PIL Image into SVD and returns only 's' part
    • get_SVD_V(image): Transforms PIL Image into SVD and returns only 'V' part

    • get_LAB(image): Transforms PIL Image into LAB

    • get_LAB_L(image): Transforms PIL Image into LAB and returns only 'L' part

    • get_LAB_A(image): Transforms PIL Image into LAB and returns only 'A' part

    • get_LAB_B(image): Transforms PIL Image into LAB and returns only 'B' part

    • get_XYZ(image): Transforms PIL Image into XYZ

    • get_XYZ_X(image): Transforms PIL Image into XYZ and returns only 'X' part

    • get_XYZ_Y(image): Transforms PIL Image into XYZ and returns only 'Y' part

    • get_XYZ_Z(image): Transforms PIL Image into XYZ and returns only 'Z' part

  • ts_model_helper : contains helpful function to save or display model information and performance of tensorflow model

    • save(history, filename): Function which saves data from neural network model
    • show(history, filename): Function which shows data from neural network model

All these modules will be enhanced during development of the project

How to contribute

This git project uses git-flow implementation. You are free to contribute to it.