123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- from setuptools import setup
- import setuptools.command.build_py
- def readme():
- with open('README.rst') as f:
- return f.read()
- class BuildTestCommand(setuptools.command.build_py.build_py):
- """Custom build command."""
- def run(self):
- # run tests using doctest
- import doctest
- from ipfml import processing
- from ipfml import metrics
- from ipfml.filters import noise as noise_filters
- print("==============================")
- print("Runs test command...")
- doctest.testmod(processing)
- doctest.testmod(metrics)
- doctest.testmod(noise_filters)
- # Run format code using ypaf
- try:
- print("==============================")
- print("Runs format code command...")
- self.spawn(['yapf', '-ir', '-vv', 'ipfml'])
- except RuntimeError:
- self.warn('Format pakcage code failed')
- setuptools.command.build_py.build_py.run(self)
- setup(
- name='ipfml',
- version='0.2.5',
- description='Image Processing For Machine Learning',
- long_description=readme(),
- classifiers=[
- 'Development Status :: 3 - Alpha',
- 'License :: OSI Approved :: MIT License',
- 'Programming Language :: Python :: 3.6',
- 'Topic :: Scientific/Engineering :: Artificial Intelligence'
- ],
- url='https://gogs.univ-littoral.fr/jerome.buisine/IPFML',
- author='Jérôme BUISINE',
- author_email='jerome.buisine@univ-littoral.fr',
- license='MIT',
- packages=['ipfml', 'ipfml/filters'],
- install_requires=[
- 'matplotlib',
- 'numpy',
- 'Pillow',
- 'sklearn',
- 'scikit-image',
- 'scipy',
- 'opencv-python',
- 'scipy',
- 'yapf'
- ],
- cmdclass={
- 'build_py': BuildTestCommand,
- },
- zip_safe=False)
|