123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318 |
- <!DOCTYPE html>
- <!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
- <!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
- <head>
- <meta charset="utf-8">
-
- <meta name="viewport" content="width=device-width, initial-scale=1.0">
-
- <title>ipfml.processing.reconstruction — ipfml v0.4.6 documentation</title>
-
-
-
-
-
-
-
-
-
-
- <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
- <link rel="index" title="Index" href="../../../genindex.html" />
- <link rel="search" title="Search" href="../../../search.html" />
-
- <script src="../../../_static/js/modernizr.min.js"></script>
- </head>
- <body class="wy-body-for-nav">
-
- <div class="wy-grid-for-nav">
-
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search">
-
-
- <a href="../../../index.html" class="icon icon-home"> ipfml
-
-
- </a>
-
-
-
- <div class="version">
- 0.4.6
- </div>
-
-
-
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
-
- </div>
- <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
-
-
-
-
-
-
- <p class="caption"><span class="caption-text">Contents:</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../description.html">Description</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../ipfml.html">Documentation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../examples.html">Examples</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../contributing.html">Contributing</a></li>
- </ul>
-
-
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
-
- <nav class="wy-nav-top" aria-label="top navigation">
-
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../index.html">ipfml</a>
-
- </nav>
- <div class="wy-nav-content">
-
- <div class="rst-content">
-
-
- <div role="navigation" aria-label="breadcrumbs navigation">
- <ul class="wy-breadcrumbs">
-
- <li><a href="../../../index.html">Docs</a> »</li>
-
- <li><a href="../../index.html">Module code</a> »</li>
-
- <li>ipfml.processing.reconstruction</li>
-
-
- <li class="wy-breadcrumbs-aside">
-
- </li>
-
- </ul>
-
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for ipfml.processing.reconstruction</h1><div class="highlight"><pre>
- <span></span><span class="sd">"""</span>
- <span class="sd">Functions for reconstruction process of image using reduction/compression methods</span>
- <span class="sd">"""</span>
- <span class="c1"># main imports</span>
- <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="c1"># image processing imports</span>
- <span class="kn">from</span> <span class="nn">numpy.linalg</span> <span class="k">import</span> <span class="n">svd</span> <span class="k">as</span> <span class="n">np_svd</span>
- <span class="kn">from</span> <span class="nn">sklearn.decomposition</span> <span class="k">import</span> <span class="n">FastICA</span><span class="p">,</span> <span class="n">IncrementalPCA</span>
- <span class="c1"># ipfml imports</span>
- <span class="kn">from</span> <span class="nn">ipfml.processing</span> <span class="k">import</span> <span class="n">transform</span>
- <div class="viewcode-block" id="svd"><a class="viewcode-back" href="../../../ipfml/ipfml.processing.reconstruction.html#ipfml.processing.reconstruction.svd">[docs]</a><span class="k">def</span> <span class="nf">svd</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">interval</span><span class="p">):</span>
- <span class="sd">"""Reconstruct an image from SVD compression using specific interval of Singular Values</span>
- <span class="sd"> Args:</span>
- <span class="sd"> image: PIL Image, Numpy array or path of 3D image</span>
- <span class="sd"> interval: Interval used for reconstruction</span>
- <span class="sd"> Returns:</span>
- <span class="sd"> Reconstructed image</span>
- <span class="sd"> Example:</span>
- <span class="sd"> >>> from PIL import Image</span>
- <span class="sd"> >>> import numpy as np</span>
- <span class="sd"> >>> from ipfml.processing import reconstruction</span>
- <span class="sd"> >>> image_values = Image.open('./images/test_img.png')</span>
- <span class="sd"> >>> reconstructed_image = reconstruction.svd(image_values, (100, 200))</span>
- <span class="sd"> >>> reconstructed_image.shape</span>
- <span class="sd"> (200, 200)</span>
- <span class="sd"> """</span>
- <span class="n">begin</span><span class="p">,</span> <span class="n">end</span> <span class="o">=</span> <span class="n">interval</span>
- <span class="n">lab_img</span> <span class="o">=</span> <span class="n">transform</span><span class="o">.</span><span class="n">get_LAB_L</span><span class="p">(</span><span class="n">image</span><span class="p">)</span>
- <span class="n">lab_img</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">lab_img</span><span class="p">,</span> <span class="s1">'uint8'</span><span class="p">)</span>
- <span class="n">U</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">V</span> <span class="o">=</span> <span class="n">np_svd</span><span class="p">(</span><span class="n">lab_img</span><span class="p">,</span> <span class="n">full_matrices</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="c1"># reconstruction using specific interval</span>
- <span class="n">smat</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">end</span> <span class="o">-</span> <span class="n">begin</span><span class="p">,</span> <span class="n">end</span> <span class="o">-</span> <span class="n">begin</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">complex</span><span class="p">)</span>
- <span class="n">smat</span><span class="p">[:,</span> <span class="p">:]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">(</span><span class="n">s</span><span class="p">[</span><span class="n">begin</span><span class="p">:</span><span class="n">end</span><span class="p">])</span>
- <span class="n">output_img</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">U</span><span class="p">[:,</span> <span class="n">begin</span><span class="p">:</span><span class="n">end</span><span class="p">],</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">smat</span><span class="p">,</span> <span class="n">V</span><span class="p">[</span><span class="n">begin</span><span class="p">:</span><span class="n">end</span><span class="p">,</span> <span class="p">:]))</span>
- <span class="k">return</span> <span class="n">output_img</span></div>
- <div class="viewcode-block" id="fast_ica"><a class="viewcode-back" href="../../../ipfml/ipfml.processing.reconstruction.html#ipfml.processing.reconstruction.fast_ica">[docs]</a><span class="k">def</span> <span class="nf">fast_ica</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">components</span><span class="p">):</span>
- <span class="sd">"""Reconstruct an image from Fast ICA compression using specific number of components to use</span>
- <span class="sd"> Args:</span>
- <span class="sd"> image: PIL Image, Numpy array or path of 3D image</span>
- <span class="sd"> components: Number of components used for reconstruction</span>
- <span class="sd"> Returns:</span>
- <span class="sd"> Reconstructed image</span>
- <span class="sd"> Example:</span>
- <span class="sd"> >>> from PIL import Image</span>
- <span class="sd"> >>> import numpy as np</span>
- <span class="sd"> >>> from ipfml.processing import reconstruction</span>
- <span class="sd"> >>> image_values = Image.open('./images/test_img.png')</span>
- <span class="sd"> >>> reconstructed_image = reconstruction.fast_ica(image_values, 25)</span>
- <span class="sd"> >>> reconstructed_image.shape</span>
- <span class="sd"> (200, 200)</span>
- <span class="sd"> """</span>
- <span class="n">lab_img</span> <span class="o">=</span> <span class="n">transform</span><span class="o">.</span><span class="n">get_LAB_L</span><span class="p">(</span><span class="n">image</span><span class="p">)</span>
- <span class="n">lab_img</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">lab_img</span><span class="p">,</span> <span class="s1">'uint8'</span><span class="p">)</span>
- <span class="n">ica</span> <span class="o">=</span> <span class="n">FastICA</span><span class="p">(</span><span class="n">n_components</span><span class="o">=</span><span class="mi">50</span><span class="p">)</span>
- <span class="c1"># run ICA on image</span>
- <span class="n">ica</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">lab_img</span><span class="p">)</span>
- <span class="c1"># reconstruct image with independent components</span>
- <span class="n">image_ica</span> <span class="o">=</span> <span class="n">ica</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">lab_img</span><span class="p">)</span>
- <span class="n">restored_image</span> <span class="o">=</span> <span class="n">ica</span><span class="o">.</span><span class="n">inverse_transform</span><span class="p">(</span><span class="n">image_ica</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">restored_image</span></div>
- <div class="viewcode-block" id="ipca"><a class="viewcode-back" href="../../../ipfml/ipfml.processing.reconstruction.html#ipfml.processing.reconstruction.ipca">[docs]</a><span class="k">def</span> <span class="nf">ipca</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="n">components</span><span class="p">,</span> <span class="n">_batch_size</span><span class="o">=</span><span class="mi">25</span><span class="p">):</span>
- <span class="sd">"""Reconstruct an image from IPCA compression using specific number of components to use and batch size</span>
- <span class="sd"> Args:</span>
- <span class="sd"> image: PIL Image, Numpy array or path of 3D image</span>
- <span class="sd"> components: Number of components used for reconstruction</span>
- <span class="sd"> batch_size: Batch size used for learn (default 25)</span>
- <span class="sd"> Returns:</span>
- <span class="sd"> Reconstructed image</span>
- <span class="sd"> Example:</span>
- <span class="sd"> >>> from PIL import Image</span>
- <span class="sd"> >>> import numpy as np</span>
- <span class="sd"> >>> from ipfml.processing import reconstruction</span>
- <span class="sd"> >>> image_values = Image.open('./images/test_img.png')</span>
- <span class="sd"> >>> reconstructed_image = reconstruction.ipca(image_values, 20)</span>
- <span class="sd"> >>> reconstructed_image.shape</span>
- <span class="sd"> (200, 200)</span>
- <span class="sd"> """</span>
- <span class="n">lab_img</span> <span class="o">=</span> <span class="n">transform</span><span class="o">.</span><span class="n">get_LAB_L</span><span class="p">(</span><span class="n">image</span><span class="p">)</span>
- <span class="n">lab_img</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">lab_img</span><span class="p">,</span> <span class="s1">'uint8'</span><span class="p">)</span>
- <span class="n">transformer</span> <span class="o">=</span> <span class="n">IncrementalPCA</span><span class="p">(</span>
- <span class="n">n_components</span><span class="o">=</span><span class="n">components</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">_batch_size</span><span class="p">)</span>
- <span class="n">transformed_image</span> <span class="o">=</span> <span class="n">transformer</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">lab_img</span><span class="p">)</span>
- <span class="n">restored_image</span> <span class="o">=</span> <span class="n">transformer</span><span class="o">.</span><span class="n">inverse_transform</span><span class="p">(</span><span class="n">transformed_image</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">restored_image</span></div>
- </pre></div>
- </div>
-
- </div>
- <footer>
-
- <hr/>
- <div role="contentinfo">
- <p>
- © Copyright 2019, Jérôme BUISINE
- </p>
- </div>
- Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
- </footer>
- </div>
- </div>
- </section>
- </div>
-
-
-
-
- <script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
- <script type="text/javascript" src="../../../_static/jquery.js"></script>
- <script type="text/javascript" src="../../../_static/underscore.js"></script>
- <script type="text/javascript" src="../../../_static/doctools.js"></script>
- <script type="text/javascript" src="../../../_static/language_data.js"></script>
-
-
- <script type="text/javascript" src="../../../_static/js/theme.js"></script>
- <script type="text/javascript">
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|