123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- % RES = corrDn(IM, FILT, EDGES, STEP, START, STOP)
- %
- % Compute correlation of matrices IM with FILT, followed by
- % downsampling. These arguments should be 1D or 2D matrices, and IM
- % must be larger (in both dimensions) than FILT. The origin of filt
- % is assumed to be floor(size(filt)/2)+1.
- %
- % EDGES is a string determining boundary handling:
- % 'circular' - Circular convolution
- % 'reflect1' - Reflect about the edge pixels
- % 'reflect2' - Reflect, doubling the edge pixels
- % 'repeat' - Repeat the edge pixels
- % 'zero' - Assume values of zero outside image boundary
- % 'extend' - Reflect and invert (continuous values and derivs)
- % 'dont-compute' - Zero output when filter overhangs input boundaries
- %
- % Downsampling factors are determined by STEP (optional, default=[1 1]),
- % which should be a 2-vector [y,x].
- %
- % The window over which the convolution occurs is specfied by START
- % (optional, default=[1,1], and STOP (optional, default=size(IM)).
- %
- % NOTE: this operation corresponds to multiplication of a signal
- % vector by a matrix whose rows contain copies of the FILT shifted by
- % multiples of STEP. See upConv.m for the operation corresponding to
- % the transpose of this matrix.
- % Eero Simoncelli, 6/96, revised 2/97.
- function res = corrDn(im, filt, edges, step, start, stop)
- %% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD)
- fprintf(1,'WARNING: You should compile the MEX version of "corrDn.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster, and provides more boundary-handling options.\n');
- %------------------------------------------------------------
- %% OPTIONAL ARGS:
- if (exist('edges') == 1)
- if (strcmp(edges,'reflect1') ~= 1)
- warning('Using REFLECT1 edge-handling (use MEX code for other options).');
- end
- end
- if (exist('step') ~= 1)
- step = [1,1];
- end
- if (exist('start') ~= 1)
- start = [1,1];
- end
- if (exist('stop') ~= 1)
- stop = size(im);
- end
- %------------------------------------------------------------
- % Reverse order of taps in filt, to do correlation instead of convolution
- filt = filt(size(filt,1):-1:1,size(filt,2):-1:1);
- tmp = rconv2(im,filt);
- res = tmp(start(1):step(1):stop(1),start(2):step(2):stop(2));
|