|
@@ -0,0 +1,306 @@
|
|
|
+
|
|
|
+
|
|
|
+"""
|
|
|
+Created on Fri Sep 14 21:02:42 2018
|
|
|
+
|
|
|
+@author: jbuisine
|
|
|
+"""
|
|
|
+
|
|
|
+from __future__ import print_function
|
|
|
+import sys, os, getopt
|
|
|
+import numpy as np
|
|
|
+import random
|
|
|
+import time
|
|
|
+import json
|
|
|
+
|
|
|
+from PIL import Image
|
|
|
+from ipfml import processing, metrics, utils
|
|
|
+
|
|
|
+from modules.utils import config as cfg
|
|
|
+from modules.utils import data as dt
|
|
|
+
|
|
|
+
|
|
|
+zone_folder = cfg.zone_folder
|
|
|
+min_max_filename = cfg.min_max_filename_extension
|
|
|
+
|
|
|
+
|
|
|
+all_scenes_list = cfg.scenes_names
|
|
|
+all_scenes_indices = cfg.scenes_indices
|
|
|
+
|
|
|
+choices = cfg.normalization_choices
|
|
|
+path = cfg.dataset_path
|
|
|
+zones = cfg.zones_indices
|
|
|
+seuil_expe_filename = cfg.seuil_expe_filename
|
|
|
+
|
|
|
+metric_choices = cfg.metric_choices_labels
|
|
|
+output_data_folder = cfg.output_data_folder
|
|
|
+custom_min_max_folder = cfg.min_max_custom_folder
|
|
|
+min_max_ext = cfg.min_max_filename_extension
|
|
|
+
|
|
|
+calibration_folder = 'calibration'
|
|
|
+generic_output_file_svd = '_random.csv'
|
|
|
+
|
|
|
+min_value_interval = sys.maxsize
|
|
|
+max_value_interval = 0
|
|
|
+
|
|
|
+def construct_new_line(path_seuil, interval, line, norm):
|
|
|
+ begin, end = interval
|
|
|
+
|
|
|
+ line_data = line.split(';')
|
|
|
+ seuil = line_data[0]
|
|
|
+ metrics = line_data[begin+1:end+1]
|
|
|
+
|
|
|
+ metrics = [float(m) for m in metrics]
|
|
|
+
|
|
|
+
|
|
|
+ if norm:
|
|
|
+ metrics = utils.normalize_arr_with_range(metrics, min_value_interval, max_value_interval)
|
|
|
+
|
|
|
+ with open(path_seuil, "r") as seuil_file:
|
|
|
+ seuil_learned = int(seuil_file.readline().strip())
|
|
|
+
|
|
|
+ if seuil_learned > int(seuil):
|
|
|
+ line = '1'
|
|
|
+ else:
|
|
|
+ line = '0'
|
|
|
+
|
|
|
+ for idx, val in enumerate(metrics):
|
|
|
+ line += ';'
|
|
|
+ line += str(val)
|
|
|
+ line += '\n'
|
|
|
+
|
|
|
+ return line
|
|
|
+
|
|
|
+def get_min_max_value_interval(_scenes_list, _filename, _interval, _choice, _color, _metric):
|
|
|
+
|
|
|
+ global min_value_interval, max_value_interval
|
|
|
+
|
|
|
+ scenes = os.listdir(path)
|
|
|
+
|
|
|
+
|
|
|
+ scenes = [s for s in scenes if min_max_filename not in s]
|
|
|
+
|
|
|
+
|
|
|
+ scenes = [s for s in scenes if calibration_folder not in s]
|
|
|
+
|
|
|
+ for id_scene, folder_scene in enumerate(scenes):
|
|
|
+
|
|
|
+
|
|
|
+ if folder_scene in _scenes_list:
|
|
|
+
|
|
|
+ scene_path = os.path.join(path, folder_scene)
|
|
|
+
|
|
|
+ zones_folder = []
|
|
|
+
|
|
|
+ for index in zones:
|
|
|
+ index_str = str(index)
|
|
|
+ if len(index_str) < 2:
|
|
|
+ index_str = "0" + index_str
|
|
|
+ zones_folder.append("zone"+index_str)
|
|
|
+
|
|
|
+
|
|
|
+ random.shuffle(zones_folder)
|
|
|
+
|
|
|
+ for id_zone, zone_folder in enumerate(zones_folder):
|
|
|
+ zone_path = os.path.join(scene_path, zone_folder)
|
|
|
+
|
|
|
+ if _color:
|
|
|
+ data_filename = _metric + "_color_" + _choice + generic_output_file_svd
|
|
|
+ else:
|
|
|
+ data_filename = _metric + "_" + _choice + generic_output_file_svd
|
|
|
+
|
|
|
+ data_file_path = os.path.join(zone_path, data_filename)
|
|
|
+
|
|
|
+
|
|
|
+ f = open(data_file_path)
|
|
|
+ lines = f.readlines()
|
|
|
+
|
|
|
+ counter = 0
|
|
|
+
|
|
|
+ for line in lines:
|
|
|
+
|
|
|
+ begin, end = _interval
|
|
|
+
|
|
|
+ line_data = line.split(';')
|
|
|
+ metrics = line_data[begin+1:end+1]
|
|
|
+ metrics = [float(m) for m in metrics]
|
|
|
+
|
|
|
+ min_value = min(metrics)
|
|
|
+ max_value = max(metrics)
|
|
|
+
|
|
|
+ if min_value < min_value_interval:
|
|
|
+ min_value_interval = min_value
|
|
|
+
|
|
|
+ if max_value > max_value_interval:
|
|
|
+ max_value_interval = max_value
|
|
|
+
|
|
|
+ counter += 1
|
|
|
+
|
|
|
+
|
|
|
+def generate_data_model(_scenes_list, _filename, _interval, _choice, _metric, _scenes = scenes_list, _nb_zones = 4, _percent = 1, _random=0, _step=40, _color=False, _norm = False):
|
|
|
+
|
|
|
+ output_train_filename = _filename + ".train"
|
|
|
+ output_test_filename = _filename + ".test"
|
|
|
+
|
|
|
+ if not '/' in output_train_filename:
|
|
|
+ raise Exception("Please select filename with directory path to save data. Example : data/dataset")
|
|
|
+
|
|
|
+
|
|
|
+ if not os.path.exists(output_data_folder):
|
|
|
+ os.makedirs(output_data_folder)
|
|
|
+
|
|
|
+ scenes = os.listdir(path)
|
|
|
+
|
|
|
+
|
|
|
+ scenes = [s for s in scenes if min_max_filename not in s]
|
|
|
+
|
|
|
+ train_file_data = []
|
|
|
+ test_file_data = []
|
|
|
+
|
|
|
+ for id_scene, folder_scene in enumerate(scenes):
|
|
|
+
|
|
|
+
|
|
|
+ if folder_scene in _scenes_list:
|
|
|
+
|
|
|
+ scene_path = os.path.join(path, folder_scene)
|
|
|
+
|
|
|
+ zones_folder = []
|
|
|
+
|
|
|
+ for index in zones:
|
|
|
+ index_str = str(index)
|
|
|
+ if len(index_str) < 2:
|
|
|
+ index_str = "0" + index_str
|
|
|
+ zones_folder.append("zone"+index_str)
|
|
|
+
|
|
|
+
|
|
|
+ if _random:
|
|
|
+ random.shuffle(zones_folder)
|
|
|
+
|
|
|
+ path_seuil = os.path.join(scene_path, seuil_expe_filename)
|
|
|
+
|
|
|
+ for id_zone, zone_folder in enumerate(zones_folder):
|
|
|
+ zone_path = os.path.join(scene_path, zone_folder)
|
|
|
+
|
|
|
+ if _color:
|
|
|
+ data_filename = _metric + "_color_" + _choice + generic_output_file_svd
|
|
|
+ else:
|
|
|
+ data_filename = _metric + "_" + _choice + generic_output_file_svd
|
|
|
+
|
|
|
+ data_file_path = os.path.join(zone_path, data_filename)
|
|
|
+
|
|
|
+
|
|
|
+ f = open(data_file_path)
|
|
|
+ lines = f.readlines()
|
|
|
+
|
|
|
+ num_lines = len(lines)
|
|
|
+
|
|
|
+ if _random:
|
|
|
+ random.shuffle(lines_indexes)
|
|
|
+
|
|
|
+ counter = 0
|
|
|
+
|
|
|
+ for data in lines:
|
|
|
+
|
|
|
+ percent = counter / num_lines
|
|
|
+ image_index = int(data.split(';')[0])
|
|
|
+
|
|
|
+ if image_index % _step == 0:
|
|
|
+ line = construct_new_line(path_seuil, _interval, data, _choice, _norm, _sep, _index)
|
|
|
+
|
|
|
+ if id_zone < _nb_zones and folder_scene in _scenes and percent <= _percent:
|
|
|
+ train_file_data.append(line)
|
|
|
+ else:
|
|
|
+ test_file_data.append(line)
|
|
|
+
|
|
|
+ counter += 1
|
|
|
+
|
|
|
+ f.close()
|
|
|
+
|
|
|
+
|
|
|
+ train_file = open(output_train_filename, 'w')
|
|
|
+ test_file = open(output_test_filename, 'w')
|
|
|
+
|
|
|
+ for line in train_file_data:
|
|
|
+ train_file.write(line)
|
|
|
+
|
|
|
+ for line in test_file_data:
|
|
|
+ test_file_data.write(line)
|
|
|
+
|
|
|
+ train_file.close()
|
|
|
+ test_file.close()
|
|
|
+
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ p_custom = False
|
|
|
+
|
|
|
+ if len(sys.argv) <= 1:
|
|
|
+ print('Run with default parameters...')
|
|
|
+ print('python generate_data_model_random.py --output xxxx --interval 0,20 --kind svdne --metric lab --scenes "A, B, D" --nb_zones 5 --percent 0.7 --random 0 --step 40 --color 0 --custom min_max_filename')
|
|
|
+ sys.exit(2)
|
|
|
+ try:
|
|
|
+ opts, args = getopt.getopt(sys.argv[1:], "ho:i:k:s:n:p:r:s:c:c", ["help=", "output=", "interval=", "kind=", "metric=","scenes=", "nb_zones=", "percent=", "random=", "step=", "color=", "custom="])
|
|
|
+ except getopt.GetoptError:
|
|
|
+
|
|
|
+ print('python generate_data_model_random.py --output xxxx --interval 0,20 --kind svdne --metric lab --scenes "A, B, D" --nb_zones 5 --percent 0.7 --random 0 --step 40 --color 0 --custom min_max_filename')
|
|
|
+ sys.exit(2)
|
|
|
+ for o, a in opts:
|
|
|
+ if o == "-h":
|
|
|
+ print('python generate_data_model_random.py --output xxxx --interval 0,20 --kind svdne --metric lab --scenes "A, B, D" --nb_zones 5 --percent 0.7 --random 0 --step 40 --color 0 --custom min_max_filename')
|
|
|
+ sys.exit()
|
|
|
+ elif o in ("-o", "--output"):
|
|
|
+ p_filename = a
|
|
|
+ elif o in ("-i", "--interval"):
|
|
|
+ p_interval = list(map(int, a.split(',')))
|
|
|
+ elif o in ("-k", "--kind"):
|
|
|
+ p_kind = a
|
|
|
+ elif o in ("-m", "--metric"):
|
|
|
+ p_metric = a
|
|
|
+ elif o in ("-s", "--scenes"):
|
|
|
+ p_scenes = a.split(',')
|
|
|
+ elif o in ("-n", "--nb_zones"):
|
|
|
+ p_nb_zones = int(a)
|
|
|
+ elif o in ("-p", "--percent"):
|
|
|
+ p_percent = float(a)
|
|
|
+ elif o in ("-r", "--random"):
|
|
|
+ p_random = int(a)
|
|
|
+ elif o in ("-p", "--percent"):
|
|
|
+ p_step = int(a)
|
|
|
+ elif o in ("-c", "--color"):
|
|
|
+ p_color = int(a)
|
|
|
+ elif o in ("-c", "--custom"):
|
|
|
+ p_custom = a
|
|
|
+ else:
|
|
|
+ assert False, "unhandled option"
|
|
|
+
|
|
|
+
|
|
|
+ scenes_list = dt.get_renderer_scenes_names(p_renderer)
|
|
|
+ scenes_indices = dt.get_renderer_scenes_indices(p_renderer)
|
|
|
+
|
|
|
+
|
|
|
+ scenes_selected = []
|
|
|
+
|
|
|
+ for scene_id in p_scenes:
|
|
|
+ index = scenes_indices.index(scene_id.strip())
|
|
|
+ scenes_selected.append(scenes_list[index])
|
|
|
+
|
|
|
+
|
|
|
+ if p_custom:
|
|
|
+ get_min_max_value_interval(scenes_list, p_filename, p_interval, p_kind, p_color, p_metric)
|
|
|
+
|
|
|
+
|
|
|
+ if not os.path.exists(custom_min_max_folder):
|
|
|
+ os.makedirs(custom_min_max_folder)
|
|
|
+
|
|
|
+ min_max_folder_path = os.path.join(os.path.dirname(__file__), custom_min_max_folder)
|
|
|
+ min_max_filename_path = os.path.join(min_max_folder_path, p_custom)
|
|
|
+
|
|
|
+ with open(min_max_filename_path, 'w') as f:
|
|
|
+ f.write(str(min_value_interval) + '\n')
|
|
|
+ f.write(str(max_value_interval) + '\n')
|
|
|
+
|
|
|
+
|
|
|
+ generate_data_model(scenes_list, p_filename, p_interval, p_kind, p_metric, scenes_selected, p_nb_zones, p_percent, p_random, p_step, p_color, p_custom)
|
|
|
+
|
|
|
+if __name__== "__main__":
|
|
|
+ main()
|