123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- import sys, os, getopt
- from PIL import Image
- from ipfml import processing, utils
- from modules.utils import config as cfg
- from modules.utils import data_type as dt
- from modules import noise
- import numpy as np
- import matplotlib.pyplot as plt
- plt.style.use('ggplot')
- noise_list = cfg.noise_labels
- generated_folder = cfg.generated_folder
- filename_ext = cfg.filename_ext
- metric_choices = cfg.metric_choices_labels
- normalization_choices = cfg.normalization_choices
- pictures_folder = cfg.pictures_output_folder
- step_picture = 10
- error_data_choices = ['MAE', 'MSE']
- def compute_mae(previous_data, current_data):
- n = len(previous_data)
- mae_sum = 0.
- for id, x in enumerate(current_data):
- y = previous_data[id] # current data reduces error
- mae_sum += abs(x - y)
- return mae_sum / n
- def compute_mse(previous_data, current_data):
- n = len(previous_data)
- mse_sum = 0.
- for id, x in enumerate(current_data):
- y = previous_data[id] # current data reduces error
- mse_sum += abs(x - y)
- return mse_sum / n
- def main():
- # default values
- p_step = 1
- p_color = 0
- p_norm = 0
- p_ylim = (0, 1)
- max_value_svd = 0
- min_value_svd = sys.maxsize
- if len(sys.argv) <= 1:
- print('python noise_svd_mae_visualization.py --prefix generated/prefix/noise --metric lab --mode svdn --n 300 --interval "0, 200" --step 30 --color 1 --norm 1 --ylim "0, 1" --error MAE')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "h:p:m:m:n:i:s:c:n:y:e", ["help=", "prefix=", "metric=", "mode=", "n=", "interval=", "step=", "color=", "norm=", "ylim=", "error="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python noise_svd_mae_visualization.py --prefix generated/prefix/noise --metric lab --mode svdn --n 300 --interval "0, 200" --step 30 --color 1 --norm 1 --ylim "0, 1" --error MAE')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python noise_svd_mae_visualization.py --prefix generated/prefix/noise --metric lab --mode svdn --n 300 --interval "0, 200" --step 30 --color 1 --norm 1 --ylim "0, 1" --error MAE')
- sys.exit()
- elif o in ("-p", "--prefix"):
- p_path = a
- elif o in ("-m", "--mode"):
- p_mode = a
- if not p_mode in normalization_choices:
- assert False, "Unknown normalization choice, %s" % normalization_choices
- elif o in ("-m", "--metric"):
- p_metric = a
- if not p_metric in metric_choices:
- assert False, "Unknown metric choice, %s" % metric_choices
- elif o in ("-n", "--n"):
- p_n = int(a)
- elif o in ("-n", "--norm"):
- p_norm = int(a)
- elif o in ("-c", "--color"):
- p_color = int(a)
- elif o in ("-i", "--interval"):
- p_interval = list(map(int, a.split(',')))
- elif o in ("-s", "--step"):
- p_step = int(a)
- elif o in ("-y", "--ylim"):
- p_ylim = list(map(float, a.split(',')))
- elif o in ("-e", "--error"):
- p_error = a
- if p_error not in error_data_choices:
- assert False, "Unknow error choice to display %s" % error_data_choices
- else:
- assert False, "unhandled option"
- p_prefix = p_path.split('/')[1].replace('_', '')
- noise_name = p_path.split('/')[2]
- if p_color:
- file_path = os.path.join(p_path, p_prefix + "_" + noise_name + "_color_{}." + filename_ext)
- else:
- file_path = os.path.join(p_path, p_prefix + "_" + noise_name + "_{}." + filename_ext)
- begin, end = p_interval
- all_svd_data = []
- svd_data = []
- image_indices = []
- noise_indices = range(1, p_n)[::-1]
- # get all data from images
- for i in noise_indices:
- if i % step_picture == 0:
- image_path = file_path.format(str(i))
- img = Image.open(image_path)
- svd_values = dt.get_svd_data(p_metric, img)
- if p_norm:
- svd_values = svd_values[begin:end]
- all_svd_data.append(svd_values)
- # update min max values
- min_value = svd_values.min()
- max_value = svd_values.max()
- if min_value < min_value_svd:
- min_value_svd = min_value
- if max_value > min_value_svd:
- max_value_svd = max_value
- print('%.2f%%' % ((p_n - i + 1) / p_n * 100))
- sys.stdout.write("\033[F")
- previous_data = []
- error_data = [0.]
- for id, data in enumerate(all_svd_data):
- current_id = (p_n - ((id + 1) * 10))
- if current_id % p_step == 0:
- current_data = data
- if p_mode == 'svdn':
- current_data = utils.normalize_arr(current_data)
- if p_mode == 'svdne':
- current_data = utils.normalize_arr_with_range(current_data, min_value_svd, max_value_svd)
- svd_data.append(current_data)
- image_indices.append(current_id)
- if len(previous_data) > 0:
- current_mae = compute_mae(previous_data, current_data)
- error_data.append(current_mae)
- if len(previous_data) == 0:
- previous_data = current_data
- # display all data using matplotlib (configure plt)
- gridsize = (3, 2)
- # fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(30, 22))
- fig = plt.figure(figsize=(30, 22))
- ax1 = plt.subplot2grid(gridsize, (0, 0), colspan=2, rowspan=2)
- ax2 = plt.subplot2grid(gridsize, (2, 0), colspan=2)
- ax1.set_title(p_prefix + ', ' + noise_name + ' noise, interval information ['+ str(begin) +', '+ str(end) +'], ' + p_metric + ' metric, step ' + str(p_step) + ' normalization ' + p_mode)
- ax1.set_label('Importance of noise [1, 999]')
- ax1.set_xlabel('Vector features')
- for id, data in enumerate(svd_data):
- p_label = p_prefix + str(image_indices[id]) + " | MAE : " + str(error_data[id])
- ax1.plot(data, label=p_label)
- ax1.legend(bbox_to_anchor=(0.8, 1), loc=2, borderaxespad=0.2, fontsize=12)
- if not p_norm:
- ax1.set_xlim(begin, end)
- # adapt ylim
- y_begin, y_end = p_ylim
- ax1.set_ylim(y_begin, y_end)
- output_filename = p_prefix + "_" + noise_name + "_1_to_" + str(p_n) + "_B" + str(begin) + "_E" + str(end) + "_" + p_metric + "_S" + str(p_step) + "_norm" + str(p_norm )+ "_" + p_mode + "_" + p_error
- if p_color:
- output_filename = output_filename + '_color'
- ax2.set_title(p_error + " information for : " + p_prefix + ', ' + noise_name + ' noise, interval information ['+ str(begin) +', '+ str(end) +'], ' + p_metric + ' metric, step ' + str(p_step) + ', normalization ' + p_mode)
- ax2.set_ylabel('Mean Squared Error')
- ax2.set_xlabel('Number of samples per pixels')
- ax2.set_xticks(range(len(image_indices)))
- ax2.set_xticklabels(image_indices)
- ax2.plot(error_data)
- print("Generation of output figure... %s" % output_filename)
- output_path = os.path.join(pictures_folder, output_filename)
- if not os.path.exists(pictures_folder):
- os.makedirs(pictures_folder)
- fig.savefig(output_path, dpi=(200))
- if __name__== "__main__":
- main()
|