123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- # main imports
- import sys, os, argparse
- import numpy as np
- # image processing imports
- from PIL import Image
- from ipfml import processing, utils
- import matplotlib.pyplot as plt
- # modules and config imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- from data_attributes import get_image_features
- noise_list = cfg.noise_labels
- generated_folder = cfg.generated_folder
- filename_ext = cfg.filename_ext
- feature_choices = cfg.features_choices_labels
- normalization_choices = cfg.normalization_choices
- pictures_folder = cfg.pictures_output_folder
- steparam_picture = 10
- class ThresholdData():
- """
- A simple class to store threshold data
- """
- def __init__(self, noise, threshold, color):
- self.noise = noise
- self.threshold = threshold
- self.color = color
- def get_noise(self):
- return self.noise
- def get_threshold(self):
- return self.threshold
- def isColor(self):
- return self.color
- def main():
- parser = argparse.ArgumentParser(description="Display threshold svd data")
- parser.add_argument('--prefix', type=str, help='Generated noise folder prefix (ex: `generated/prefix/noise`)')
- parser.add_argument('--file', type=str, help='Threshold file to use')
- parser.add_argument('--mode', type=str, help='Kind of normalization', default=normalization_choices)
- parser.add_argument('--feature', type=str, help='feature choice', default=feature_choices)
- parser.add_argument('--color', type=int, help='Use of color or grey level', default=0)
- parser.add_argument('--norm', type=int, help='Use of normalization from interval or whole data vector', default=0)
- parser.add_argument('--interval', type=str, help='Interval data choice (ex: `0, 200`)', default="0, 200")
- parser.add_argument('--step', type=int, help='Step of image indices to keep', default=1)
- parser.add_argument('--ylim', type=str, help='Limite to display data (ex: `0, 1`)', default="0, 1")
- args = parser.parse_args()
- param_prefix = args.prefix
- param_file = args.file
- param_mode = args.mode
- param_feature = args.feature
- param_n = args.n
- param_color = args.color
- param_norm = args.norm
- param_interval = list(map(int, args.interval.split(',')))
- param_step = args.step
- param_ylim = list(map(float, args.ylim.split(',')))
- param_prefix = param_prefix.split('/')[1].replace('_', '')
- if param_color:
- file_path = param_prefix + "{}/" + param_prefix + "_{}_color_{}." + filename_ext
- else:
- file_path = param_prefix + "{}/" + param_prefix + "_{}_{}." + filename_ext
- begin, end = param_interval
- svd_data = []
- final_svd_data = []
- image_indices = []
- min_max_list = {}
- threshold_data = []
- # read data threshold file
- with open(param_file, 'r') as f:
- lines = f.readlines()
- for line in lines:
- data = line.replace('\n', '').split(';')
- print(data)
- threshold = ThresholdData(data[0], float(data[1]), int(data[2]))
- threshold_data.append(threshold)
- # filter data if color or not
- threshold_data = [t for t in threshold_data if t.isColor() == param_color]
- for id, threshold in enumerate(threshold_data):
- current_noise = threshold.get_noise()
- current_threshold = threshold.get_threshold()
- min_max_list[current_noise] = (sys.maxsize, 0)
- threshold_found = False
- # get all data from images
- for i in range(1, param_n):
- if i % steparam_picture == 0:
- image_path = file_path.format(current_noise, current_noise, str(i))
- img = Image.open(image_path)
- svd_values = get_image_features(param_feature, img)
- if param_norm:
- svd_values = svd_values[begin:end]
- # only append data once
- if not threshold_found and current_threshold < i:
- svd_data.append(svd_values)
- image_indices.append(i)
- if current_threshold < i:
- threshold_found = True
- # update min max values
- min_value = svd_values.min()
- max_value = svd_values.max()
- # update of min max values for noise
- current_min, current_max = min_max_list[current_noise]
- if min_value < current_min:
- current_min = min_value
- if max_value > current_max:
- current_max = max_value
- min_max_list[current_noise] = (current_min, current_max)
- print('%.2f%%' % (((i + 1) * 100 + (id * param_n * 100)) / (param_n * len(threshold_data))))
- sys.stdout.write("\033[F")
- for id, data in enumerate(svd_data):
- current_data = data
- threshold = threshold_data[id]
- min_value_svd, max_value_svd = min_max_list[threshold.get_noise()]
- if param_mode == 'svdn':
- current_data = utils.normalize_arr(current_data)
- if param_mode == 'svdne':
- current_data = utils.normalize_arr_with_range(current_data, min_value_svd, max_value_svd)
- final_svd_data.append(current_data)
- # display all data using matplotlib (configure plt)
- plt.rcParams['figure.figsize'] = (25, 18)
- plt.title(param_prefix + ' noise, interval information ['+ str(begin) +', '+ str(end) +'], ' + param_feature + ' feature, step ' + str(param_step) + ' normalization ' + param_mode, fontsize=20)
- plt.ylabel('Importance of noise [1, 999]', fontsize=14)
- plt.xlabel('Vector features', fontsize=16)
- for id, data in enumerate(final_svd_data):
- param_label = param_prefix + '_' + threshold_data[id].get_noise() + str(image_indices[id])
- plt.plot(data, label=param_label)
- plt.legend(bbox_to_anchor=(0.8, 1), loc=2, borderaxespad=0.2, fontsize=14)
- if not param_norm:
- plt.xlim(begin, end)
- # adapt ylim
- y_begin, y_end = param_ylim
- plt.ylim(y_begin, y_end)
- output_filename = param_prefix + "_threshold_1_to_" + str(param_n) + "_B" + str(begin) + "_E" + str(end) + "_" + param_feature + "_S" + str(param_step) + "_norm" + str(param_norm )+ "_" + param_mode
- if param_color:
- output_filename = output_filename + '_color'
- print("Generation of output figure... %s" % output_filename)
- output_path = os.path.join(pictures_folder, output_filename)
- if not os.path.exists(pictures_folder):
- os.makedirs(pictures_folder)
- plt.savefig(output_path, dpi=(200))
- if __name__== "__main__":
- main()
|