noise_svd_visualization.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165
  1. import sys, os, getopt
  2. from PIL import Image
  3. from ipfml import processing
  4. from modules.utils import config as cfg
  5. from modules.utils import data_type as dt
  6. from modules import noise
  7. import matplotlib.pyplot as plt
  8. noise_list = cfg.noise_labels
  9. generated_folder = cfg.generated_folder
  10. filename_ext = cfg.filename_ext
  11. metric_choices = cfg.metric_choices_labels
  12. normalization_choices = cfg.normalization_choices
  13. pictures_folder = cfg.pictures_output_folder
  14. def main():
  15. # default values
  16. p_step = 1
  17. p_color = 0
  18. p_norm = 0
  19. p_ylim = (0, 1)
  20. max_value_svd = 0
  21. min_value_svd = sys.maxsize
  22. if len(sys.argv) <= 1:
  23. print('python noise_svd_visualization.py --prefix generated/noise/prefix --metric lab --mode svdn --n 300 --interval "0, 200" --step 30 --color 1 --norm 1 --ylim "0, 1"')
  24. sys.exit(2)
  25. try:
  26. opts, args = getopt.getopt(sys.argv[1:], "h:p:m:m:n:i:s:c:n:y", ["help=", "prefix=", "metric=", "mode=", "n=", "interval=", "step=", "color=", "norm=", "ylim="])
  27. except getopt.GetoptError:
  28. # print help information and exit:
  29. print('python noise_svd_visualization.py --prefix generated/noise/prefix --metric lab --mode svdn --n 300 --interval "0, 200" --step 30 --color 1 --norm 1 --ylim "0, 1"')
  30. sys.exit(2)
  31. for o, a in opts:
  32. if o == "-h":
  33. print('python noise_svd_visualization.py --prefix generated/noise/prefix --metric lab --mode svdn --n 300 --interval "0, 200" --step 30 --color 1 --norm 1 --ylim "0, 1"')
  34. sys.exit()
  35. elif o in ("-p", "--prefix"):
  36. p_path = a
  37. elif o in ("-m", "--mode"):
  38. p_mode = a
  39. if not p_mode in normalization_choices:
  40. assert False, "Unknown normalization choice, %s" % normalization_choices
  41. elif o in ("-m", "--metric"):
  42. p_metric = a
  43. if not p_metric in metric_choices:
  44. assert False, "Unknown metric choice, %s" % metric_choices
  45. elif o in ("-n", "--n"):
  46. p_n = int(a)
  47. elif o in ("-n", "--norm"):
  48. p_norm = int(a)
  49. elif o in ("-c", "--color"):
  50. p_color = int(a)
  51. elif o in ("-i", "--interval"):
  52. p_interval = list(map(int, a.split(',')))
  53. elif o in ("-s", "--step"):
  54. p_step = int(a)
  55. elif o in ("-y", "--ylim"):
  56. p_ylim = list(map(float, a.split(',')))
  57. else:
  58. assert False, "unhandled option"
  59. p_prefix = p_path.split('/')[1].replace('_', '')
  60. noise_name = p_path.split('/')[2].replace('_', '')
  61. if p_color:
  62. file_path = p_path + "/" + p_prefix + "_{}_color." + filename_ext
  63. else:
  64. file_path = p_path + "/" + p_prefix + "_{}." + filename_ext
  65. begin, end = p_interval
  66. all_svd_data = []
  67. svd_data = []
  68. image_indices = []
  69. # get all data from images
  70. for i in range(1, p_n):
  71. image_path = file_path.format(str(i))
  72. img = Image.open(image_path)
  73. svd_values = dt.get_svd_data(p_metric, img)
  74. if p_norm:
  75. svd_values = svd_values[begin:end]
  76. all_svd_data.append(svd_values)
  77. # update min max values
  78. min_value = svd_values.min()
  79. max_value = svd_values.max()
  80. if min_value < min_value_svd:
  81. min_value_svd = min_value
  82. if max_value > min_value_svd:
  83. max_value_svd = max_value
  84. print('%.2f%%' % ((i + 1) / p_n * 100))
  85. sys.stdout.write("\033[F")
  86. for id, data in enumerate(all_svd_data):
  87. if id % p_step == 0:
  88. current_data = data
  89. if p_mode == 'svdn':
  90. current_data = processing.normalize_arr(current_data)
  91. if p_mode == 'svdne':
  92. current_data = processing.normalize_arr_with_range(current_data, min_value_svd, max_value_svd)
  93. svd_data.append(current_data)
  94. image_indices.append(id)
  95. # display all data using matplotlib (configure plt)
  96. plt.rcParams['figure.figsize'] = (25, 18)
  97. plt.title(p_prefix + ' noise, interval information ['+ str(begin) +', '+ str(end) +'], ' + p_metric + ' metric, step ' + str(p_step) + ' normalization ' + p_mode, fontsize=20)
  98. plt.ylabel('Importance of noise [1, 999]', fontsize=14)
  99. plt.xlabel('Vector features', fontsize=16)
  100. for id, data in enumerate(svd_data):
  101. p_label = p_prefix + str(image_indices[id])
  102. plt.plot(data, label=p_label)
  103. plt.legend(bbox_to_anchor=(0.8, 1), loc=2, borderaxespad=0.2, fontsize=14)
  104. if not p_norm:
  105. plt.xlim(begin, end)
  106. # adapt ylim
  107. y_begin, y_end = p_ylim
  108. plt.ylim(y_begin, y_end)
  109. output_filename = p_prefix + "_" + noise_name + "_1_to_" + str(p_n) + "_B" + str(begin) + "_E" + str(end) + "_" + p_metric + "_S" + str(p_step) + "_norm" + str(p_norm )+ "_" + p_mode
  110. if p_color:
  111. output_filename = output_filename + '_color'
  112. print("Generation of output figure... %s" % output_filename)
  113. output_path = os.path.join(pictures_folder, output_filename)
  114. if not os.path.exists(pictures_folder):
  115. os.makedirs(pictures_folder)
  116. plt.savefig(output_path, dpi=(200))
  117. if __name__== "__main__":
  118. main()