Analysis of different noise applied on synthesis images using SVD compression

Jérôme BUISINE a4e29b32d7 Update of generation script преди 5 години
images 4d8ecac01e Update of documentation; Update of noise displayed преди 5 години
modules a4e29b32d7 Update of generation script преди 5 години
.gitignore 02b6aaa591 Add of visualization scripts; Updates of modules преди 5 години
LICENSE 70e882f053 Initial commit преди 5 години
README.md 4d8ecac01e Update of documentation; Update of noise displayed преди 5 години
generate_all_data.py 748f06528a Add of SVD generation data files преди 5 години
generate_all_noise.sh 84db755b03 Update of generate noise images script преди 5 години
generate_data_model_random.py 748f06528a Add of SVD generation data files преди 5 години
generate_noise_all_curves.sh 4d8ecac01e Update of documentation; Update of noise displayed преди 5 години
noise_computation.py a4e29b32d7 Update of generation script преди 5 години
noise_svd_visualization.py 4d8ecac01e Update of documentation; Update of noise displayed преди 5 години
requirements.txt 7c4b7a1ad2 First scripts of project added преди 5 години

README.md

NoiseAnalysis

Description

Analysis of different noises using singular values vector obtained from SVD compression.

Noise list :

  • cauchy
  • gaussian
  • laplace
  • log_normal
  • mut_white
  • salt_pepper
  • white

Scripts

noise_computation.py

This script is used to compute all noise for each image in the images folder.

python noise_computation.py --noise salt_pepper --image path/to/image.png --n 1000 --identical 1 --output image_salt_pepper.png --all 1 --p 0.1

Parameters :

  • noise : specify the noise to use (one available from the list above)
  • image : source path of the image we want to add noise
  • n : level of noise to use
  • identical : same noise or not for each chanel in case of RGB image
  • output : output image name wanted
  • all : generate all level noise from 1 to n
  • p : optional parameter only used for salt and pepper noise

noise_svd_visualization.py

This script is used to display noise for each level of noise of image.

python noise_svd_visualization.py  --prefix generated/${image}/${noise} --metric lab --n 1000 --mode svdne --interval "0, 200" --step 40 --norm 0 --ylim "0, 0.05"

Parameters :

  • prefix : specify the folder of image for specific noise
  • metric : metric choice to compute in order to extract SVD data
  • mode : level of normalization ['svd', 'svdn', 'svdne']
  • interval : features to display from singular values vector
  • step : interval of noise to keep for display
  • norm : normalization between only values kept from interval
  • ylim : ylim to use in order to display curves